
Asynchronous Effect Handling

Leo Poulson

Master of Science

Computer Science

School of Informatics

University of Edinburgh

2020

Abstract

We give an implementation of Ahman and Pretnar’s novel asynchronous effects

abstraction, based on effect handlers. The crux of this system is the decoupling of the

invocation of an effect from the resumption of the caller with the handled value.

We give an implementation in Frank, a language designed around effect handlers.

We give a series of simple modifications to Frank to allow for pre-emptive concurrency,

being the non-cooperative scheduling of several threads.

Finally, we show how one can easily and elegantly implement many commonplace

features of modern programming languages — such as async-await and futures —

with asynchronous effects. Such structures are usually opaque black boxes to users;

we move them into the hands of the programmer.

i

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Leo Poulson)

ii

Acknowledgments

Thanks to Sam Lindley for giving me the opportunity to write this dissertation, and for

his feedback and support throughout. It has been a privilege to be supervised by him.

Thanks to my family for making this year possible, and thanks to everyone who

made it so much fun.

iii

Table of Contents

1 Introduction 1
1.1 Related Work . 2

1.2 Structure . 3

2 Programming in Frank 4
2.1 Case Study: Cooperative Concurrency 8

2.1.1 Simple Scheduling . 8

2.1.2 Forking New Processes . 9

3 Formalisation of Frank 11

4 Pre-emptive Concurrency 16
4.1 Motivation . 16

4.2 Relaxing . 17

4.3 Freezing . 18

4.4 Yielding . 20

4.5 Counting . 21

4.6 Handling . 23

4.7 Starvation . 25

4.8 Soundness . 27

5 Implementation 28
5.1 Communication . 29

5.2 An Interface for Asynchronous Effects 30

5.3 In Action . 32

5.4 Modelling Asynchrony . 33

iv

6 Examples 34
6.1 Pre-emptive Scheduling . 34

6.2 Futures . 35

6.3 Async-Await . 36

6.4 Cancelling Tasks . 37

6.4.1 Interleaving . 38

7 Conclusion 39
7.1 Limitations and Future Work . 39

Bibliography 41

A Remaining Formalisms 43

B Extended Proofs 48
B.1 Subject Reduction . 48

B.2 Type Soundness Proofs . 49

v

Chapter 1

Introduction

Effects, such as state and nondeterminism, are pervasive when programming; for a

program to do anything beyond compute a pure mathematical function, it must interact

with the outside world, be this to read from a file, make some random choice, or

run concurrently with another program. Algebraic effects and their handlers (Plotkin

and Power [2003], Plotkin and Pretnar [2013]) are a novel way to encapsulate, reason

about and specify computational effects in programming languages. For instance, a

program that reads from and writes to some local state can utilise the State effect,

which supports two operations; get and put. A handler for the State effect gives a

meaning to these abstract operations. Programming with algebraic effects and handlers

is increasingly popular; they have seen adoption in the form of libraries for existing

languages (Kammar et al. [2013], Kiselyov et al. [2013], Brady [2013]) as well as in

novel languages designed with effect handling at their core (Bauer and Pretnar [2015],

Leijen [2017b], Convent et al. [2020]).

Traditional effect handling is synchronous; when an operation is invoked, the rest of

the computation is blocked whilst the effect handler performs the requisite computation

and then resumes the original caller. For many effects, this blocking behaviour is not a

problem; the handler usually returns quickly, and the user notices no delay. However,

not every possible computational effect behaves like this; consider an effect involving

a query to a remote database. We might not want to block the rest of the computation

whilst we perform this, as the query might take a long time; this case is even stronger

if we do not immediately want the data. To support this kind of behaviour, we need

to be able to invoke and handle effects in an asynchronous, non-blocking manner; we

characterise this as asynchronous effect handling.

In this project we investigate the implementation and applications of asynchronous

1

Chapter 1. Introduction 2

effect handling. Our lens for this is the language Frank (Lindley et al. [2017], Con-

vent et al. [2020]), a functional programming designed with effect handling at its code.

We follow the design of Æff (Ahman and Pretnar [2020]), a small programming lan-

guage designed around asynchronous effects but supporting little else. We show how

by making a simple change to the semantics of Frank, in order to yield pre-emptible

threads, we can recreate the asynchronous effect handling behaviour of Æff whilst still

enjoying the benefits of a language equipped with traditional effect handlers. Effect

handlers have already shown to make complicated control flow easy to implement, and

our work further cements this.

Our contributions are as follows;

• We present a library for programming with asynchronous effects, built in Frank.

We show how a complex system can be expressed concisely and elegantly when

programming in a language with effect handlers.

• We show how, by making a small change to the operational semantics of Frank,

we achieve pre-emptive concurrency; that is, the suspension of running threads

without co-operation. It is our hope that this change is simple enough to be

transferrable to other languages.

• We also deliver a set of examples of the uses of asynchronous effects, and show

how they have benefits to other models.

1.1 Related Work

Asynchronous programming with effect handlers is a fairly nascent field. Koka (Leijen

[2014]) is a programming language with built-in effect handlers and a Javascript back-

end. Leijen later shows us how Koka can naturally support asynchronous programming

(Leijen [2017a]). The asynchronous behaviour relies on offloading asynchronous tasks

with a setTimeout function supplied by the NodeJS backend.

Multicore OCaml (Dolan et al. [2014]) also supports asynchronous programming

through effect handling (Dolan et al. [2017]). The asynchronous behaviour of this

approach relies on asynchronous signals performed by the operating system, such as a

periodic timer message interrupting thread execution to yield pre-emptive concurrency.

A problem shared by both Koka and Multicore OCaml is they have no support

for user-defined asynchronous effects; the asynchronous signals that can be received

Chapter 1. Introduction 3

are predefined. This problem is solved by Æff (Ahman and Pretnar [2020]), a small

language built around asynchronous effect handling. Ahman and Pretnar approach the

problem of asynchrony from a different perspective, by decoupling the invocation of

an effect from its handling and resumption with the handled value. When an effect

is invoked the rest of the computation is not blocked whilst the handler is performed.

Programs then install interrupt handlers that dictate how to act on receipt of a particular

interrupt. To recover synchronous behaviour, these interrupt handlers can be awaited;

this will block the rest of the code until the interrupt is received.

Ahman and Pretnar then show how the simple building blocks of interrupt han-

dlers can be used to build common constructs for asynchronous programming, such as

cancellable remote function calls and a pre-emptive scheduler.

1.2 Structure

In Chapter 2 we give an introduction to programming with effects in Frank. We skip

over some unneeded (and previously well-covered) parts of the language, such as adap-

tors, in the interests of time.

In Chapter 3 we give the formalisation of Frank. Again, we skip over extraneous

details which can be seen in past work (Convent et al. [2020]), opting to only describe

the parts needed to understand the changes to the semantics for the following chapter.

In Chapter 4 we show how by making a small change to the semantics of Frank we

yield pre-emptible threads; that is, we can interrupt a function in the same co-operative

style but without co-operation.

In Chapter 5 we introduce the asynchronous effects abstraction and explain how it

is implemented in Frank.

In Chapter 6 we give examples of the new programs that become easily expressible

when combined with the changes made in Chapter 4.

In Chapter 7 we conclude.

Chapter 2

Programming in Frank

In this chapter we introduce Frank, and show why it is a well-suited language for

implementing an asynchronous effect handling library. We assume some familiarity

with typed functional programming, and skip over some common features of Frank

— algebraic data types, pattern matching, etc — so we can spend more time with the

novel, interesting parts; namely the definition, control and handling of algebraic effects

and the fine-grained control over evaluation of computations.

Types, Values and Operators Frank types are distinguished between effect types

and value types. Value types are the standard notion of type; effect types are used to

describe where certain effects can be performed and handled. Value types are further

divided into traditional data types, such a Bool, List X, and computation types.

A computation type {X1 -> . . . -> Xm -> [I1, . . ., In] Y} describes an operator

that takes m arguments and returns a value of type Y. The return type also expresses the

ability the computation needs access to, being a list of n interface instances; we explain

abilities in more detail later in this chapter. An interface is a collection of commands

which are offered to the computation.

Thunks Thunks are the special case of an n-ary function that takes 0 arguments.

We can evaluate them — performing the suspended computation — with the 0-ary

sequence of arguments, denoted !. The opposite action — suspending a computation

— is done by surrounding the computation in braces. This gives us fine-grained control

over when we want to evaluate computations. For example, consider the operator

badIf below:

badIf : {Bool -> X -> X -> X}

4

Chapter 2. Programming in Frank 5

badIf true yes no = yes

badIf false yes no = no

Frank is a left-to-right, call-by-value language; all arguments to operators are evaluated

from left-to-right until they become a value. As such, in the case of badIf, both of the

branches will be evaluated before the result of one of them is returned. We can recover

the correct semantics for if by giving the branches as thunks:

if : {Bool -> {X} -> {X} -> X}

if true yes no = yes!

if false yes no = no!

Here a single thunk is evaluated depending on the value of the condition. Frank’s

distinction between computation and value make controlling evaluation simple.

Interfaces and Operations Frank encapsulates effects through interfaces, which of-

fer commands. For instance, the State effect (interface) offers two operations (com-

mands), get and put. In Frank, this translates to

interface State X = get : X

| put : X -> Unit

interface RandInt = random : Int

The interface declaration for State X expresses that get is a 0-ary operation which

is resumed with a value of type X, and put takes a value of type X and is resumed

with unit. Computations get access to an interface’s commands by including them in

the ability of the program; the computation then needs to be executed in an ambient

ability containing the corresponding interface. Commands are invoked just as normal

functions;

xplusplus : {[State Int] Unit}

xplusplus! = put (get! + 1)

This familiar program increments the integer in the state by 1.

Handling Operations A handler for a specific interface can also pattern match on

the operations that are performed, and not just the values that can be returned. As an

example, consider the canonical handler for the State S interface.

runState : {<State S> X -> S -> X}

runState <get -> k> s = runState (k s) s

runState <put s -> k> _ = runState (k unit) s

runState x _ = x

Chapter 2. Programming in Frank 6

Observe that the type of runState contains <State S>, called an adjustment. This

expresses that the first argument to runState has the State S interface added to its

ambient ability. It also expresses that runState handles commands in the State S

interface, using computation pattern matching.

Computation Patterns The second and third lines of runState specify how we han-

dle get and put commands. We use a new type of pattern, called a computation pat-

tern; these are made up of a command and some arguments (which are also values,

and can be pattern matched on), plus the continuation of the calling code. The types

of arguments and the continuation are determined by the interface declaration and the

type of the handler; for instance, in <get -> k> the type of k is {S -> [State S]

X}. The continuation can then perform more State S effects; this is characterised

as shallow effect handling. This is in contrast to deep handlers, where the continua-

tion is automatically re-handled by the same handler. These are defined by folds —

specifically catamorphisms (Meijer et al. [1991]) — over computation trees; this is at-

tractive as they allow for efficient optimisations such as fusion of effect handlers (Wu

and Schrijvers [2015]). Frank’s shallow handlers only handle the first instance of an

operation; we then have to explicitly re-handle the continuation. This lets us choose to

re-handle the computation in a non-standard way if we wish.

In short, effect handling in Frank is essentially just a generalisation of traditional

pattern matching to pattern matching on computations as well.

Effect Forwarding Effects that are not handled by a particular handler are left to be

forwarded up to the next one. For instance, we might want to write a random number

to the state;

xplusrand : {[State Int, RandomInt] Unit}

xplusrand! = put (get! + random!)

We then have to handle both the State Int and Random effect in this computation. Of

course, we could just define one handler for both effects; however in the interests of

modularity we want to define two different handlers for each effect and compose them.

We can reuse the same runState handler from before, and define a new handler for

RandomInt to generate pseudo-random numbers;

runRand : {Int -> <RandomInt> X -> X}

runRand seed <random -> k> = runRand (mod (seed + 7) 10) (k seed)

runRand _ x = x

Chapter 2. Programming in Frank 7

From its type, we see that xplusrand requires the ambient ability [State Int,

RandomInt]. We can easily produce such an ability by composing the two handlers

we have, incrementally extending the ambient ability. Convent [2017] gives a more de-

tailed account of operator composition in Frank and the different cases that can arise.

Top-Level Effects Some effects need to be handled by the Frank interpreter, as Frank

is not expressive or capable enough on its own. Examples are console I/O, web re-

quests, and ML-style state cells. These effects will pass through the whole stack of

handlers up to the top-level, at which point they are handled by the interpreter.

Implicit Effect Polymorphism Consider the type of the well-known function map,

implemented in Frank;

map : {{X -> Y} -> List X -> List Y}

map f [] = []

map f (x :: xs) = (f x) :: (map f xs)

One might expect that the program map {_ -> random!} [1, 2, 3] would give a

type error; we are mapping a function of type {Int -> [RandomInt] Int}, which

does not match the argument type {X -> Y}. However, Frank uses a shorthand for

implicit effect variables. The desugared type of map is actually:

map : {{X -> [ε|] Y} -> List X -> [ε|] List Y}

Effect variables mean that operators can become effect polymorphic. This type ex-

presses that whatever the ability is of map f xs will be offered to the element-wise

operator f.

A similar thing happens in interface declarations; the interface Co below desugars

to CoVerbose:

interface Co X = fork : {[Co X] X} -> Unit

interface CoVerbose X [ε] = fork : {[ε | Co X [ε|]] X} -> Unit

Polymorphic Commands As well as having polymorphic interfaces, such as State

X, parametrised by e.g. the data stored in the state, Frank supports polymorphic com-

mands. These are commands which can be instantiated for any type. An example is

ML-style references, realised through the RefState interface:

interface RefState = new X : X -> Ref X

| read X : Ref X -> X

| write X : Ref X -> X -> Unit

Chapter 2. Programming in Frank 8

where the type variables are determined based on the arguments supplied the opera-

tions.

2.1 Case Study: Cooperative Concurrency

Effect handlers have proved to be useful abstractions for concurrent programming

(Dolan et al. [2015, 2017], Hillerström [2016]). This is partly because the invocation

of an operation not only offers up the operation’s payload, but also the continuation of

the calling computation. For many effects, such as getState, nothing interesting hap-

pens to the continuation and it is just resumed immediately. But these continuations

are first-class; they can resumed, but also stored elsewhere or even thrown away. We

illustrate this with some examples of co-operative schedulers.

2.1.1 Simple Scheduling

We introduce some simple programs and some scheduling multihandlers, to demon-

strate how subtly different handlers generate different scheduling strategies. A mul-

tihandler is simply an operator that handles multiple effects from different sources

simultaneously.

interface Yield = yield : Unit

words : {[Console, Yield] Unit}

words! = print "one "; yield!;

print "two "; yield!;

print "three "; yield!

numbers : {[Console, Yield] Unit}

numbers! = print "1 "; yield!;

print "2 "; yield!;

print "3 "; yield!

First note the simplicity of the Yield interface; we have one operation supported,

which looks very boring; the operation yield! will just return unit. It is the way we

handle yield that is more interesting. We can write a multihandler to schedule these

two threads like so:

1 schedule : {<Yield> Unit -> <Yield> Unit -> Unit}

2 schedule <yield -> m> <yield -> n> = schedule (m unit) (n unit)

3 schedule <yield -> m> <n> = schedule (m unit) n!

Chapter 2. Programming in Frank 9

4 schedule <m> <yield -> n> = schedule m! (n unit)

5 schedule _ _ = unit

When we run schedule words! numbers! we read one 1 two 2 three 3 unit

from the console. What happened? First words is evaluated until it results in a yield

command. Recall that Frank is a left-to-right call-by-(command-or-)value language; at

this point, we start evaluating the second argument, numbers. This again runs until a

yield is performed, where we return control to the scheduler. Now that all arguments

are commands or values we can proceed with pattern matching; the first case matches

and we resume both threads, handling again. This process repeats until both threads

evaluate to unit. In this way, we can imagine multihandler arguments as running in

parallel and then synchronising when all arguments perform commands and control

returns to the multihandler.

2.1.2 Forking New Processes

We can make use of Frank’s higher-order effects to dynamically create new threads at

runtime. We strengthen the Yield interface by adding a new operation fork:

interface Co = fork : {[Co] Unit} -> Unit

| yield : Unit

The operation fork takes a suspended computation that can perform further Co

effects and returns unit once handled. An example program using this interface is

forker:

forker : {[Console, Co [Console]] Unit}

forker! = print "Starting! ";

fork {print "one "; yield!; print "two "};

fork {print "1 "; yield!; print "2 "};

exit!

We can now choose a strategy for handling fork operations; we can either lazily

run them, by continuing our current thread and then running the forked thread later,

or eagerly run them, suspending the currently executing thread and running the forked

process straight away. The handler for the former, breadth-first style of scheduling, is:

interface Queue = enqueue : {[Queue] Unit} -> Unit

| runNext : {[Queue] Unit}

scheduleBF : {<Co> Unit -> [Queue] Unit}

scheduleBF <fork p -> k> = enqueue {scheduleBF (<Queue> p!)};

Chapter 2. Programming in Frank 10

scheduleBF (k unit)

scheduleBF <yield -> k> = enqueue {scheduleBF (k unit)};

(dequeue!)!

scheduleBF unit =

(dequeue!)!

We have to handle the computation scheduleBF forker! with a handler for Queue

effects afterwards. We can abstract over different queue handlers for even more possi-

ble program combinations. Moreover, notice how concisely we can express the sched-

uler; this is due to the handler having access to the continuation of the caller, and

treating it as a first-class object that can be stored elsewhere.

Chapter 3

Formalisation of Frank

The formalisation of the Frank language has been discussed at length in previous

work (Convent et al. [2020]). However, in order to illustrate changes made to the

language in this work, we explain some of the relevant parts of the language. Later in

this thesis we refer to the system presented in this chapter as F.

(data types) D

(value type variables) X

(effect type variables) E

(value types) A,B ::= D R

| {C} | X
(computation types) C ::= T → G

(argument types) T ::= 〈∆〉A
(return types) G ::= [Σ]A

(type binders) Z ::= X | [E]
(type arguments) R ::= A | [Σ]
(polytypes) P ::= ∀Z.A

(interfaces) I

(term variables) x,y,z, f

(instance variables) s,a,b,c

(seeds) σ ::= /0 | E
(abilities) Σ ::= σ|Ξ

(extensions) Ξ ::= ι | Ξ, I R

(adaptors) Θ ::= ι |Θ, I(S→ S′)

(adjustments) ∆ ::= Θ|Ξ

(instance patterns) S ::= s | S a

(kind environments) Φ,Ψ ::= · |Φ,Z

(type environments) Γ ::= · | Γ,x : A | Γ, f : P

(instance environments) Ω ::= s : Σ |Ω,a : I R

Figure 3.1: Types

Types Value types are either datatypes instantiated with type arguments D R, thunked

computations {C}, or value type variables X . Computation types are of the form

C = 〈Θ1|Ξ1〉A1→ ··· → 〈Θ|Ξ〉A→[Σ]B

where a computation of type C handles effects in Ξi or pattern matches in Ai on the

i-th argument and returns a value of type B. C may perform effects in ability Σ along

11

Chapter 3. Formalisation of Frank 12

(constructors) k

(commands) c

(uses) m ::= x | f R | m n | ↑(n : A)

(constructions) n ::= ↓m | k n | c R n | {e}
| let f : P = n in n′ | letrec f : P = e in n

| 〈Θ〉 n

(computations) e ::= r 7→ n

(computation patterns) r ::= p | 〈c p → z〉 | 〈x〉
(value patterns) p ::= k p | x

Figure 3.2: Terms

the way. The i-th argument to C can perform effects in Σ adapted by adaptor Θi and

augmented by extension Ξi. We omit details on adaptors as they are present in previous

work (Convent et al. [2020]). The same goes for the typing rules, which do not change.

An ability Σ is an extension Ξ plus a seed, which can be closed (/0) or open E. This

lets us explicitly choose whether a function can be effect polymorphic, as discussed

earlier. An extension Ξ is a finite list of interfaces.

Terms Frank uses bidirectional typing (Pierce and Turner [2000]); as such, terms

are split into uses whose types are inferred, and constructions, which are checked

against a type. Uses are monomorphic variables x, polymorphic variable instantiations

f R, applications m n and type ascriptions ↑(n : A). Constructions are made up of

uses ↓m, data constructor instances k n, suspended computations {e}, let bindings

let f : P = n in n′, recursive let letrec f : P = e in n and adaptors 〈Θ〉 n. We can inject

a use into a construction and vice versa (↓, ↑); in real Frank code these are not present.

Computations are produced by a sequence of pattern matching clauses. Each pat-

tern matching clause takes a sequence r of computation patterns. These can either be a

request pattern 〈c p → z〉, a catch-all pattern 〈x〉, or a standard value pattern p. Value

patterns are made up of data constructor patterns k p or variable patterns x.

Runtime Syntax The operational semantics uses the runtime syntax of Figure 3.3.

Uses and constructions are further divided into those which are values and those which

are not. Values are either variable or datatype instantiations, or suspended computa-

tions. We also declare a new class of normal forms, to be used in pattern binding.

These are either construction values or frozen commands, dE [c R w]e. Frozen com-

Chapter 3. Formalisation of Frank 13

(uses) m ::= · · · | dE [c R w]e
(constructions) n ::= · · · | dE [c R w]e
(use values) u ::= x | f R | ↑(v : A)

(non-use values) v ::= k w | {e}
(construction values) w ::= ↓u | v
(normal forms) t ::= w | dE [c R w]e
(evaluation frames) F ::= [] n | u (t, [],n) | ↑([] : A)

| ↓[] | k (w, [],n) | c R (w, [],n)

| let f : P = [] in n | 〈Θ〉 []
(evaluation contexts) E ::= [] | F [E]

Figure 3.3: Runtime Syntax

mands are used to capture a continuation’s delimited continuation, being the largest

surrounding continuation up to where it is handled. As soon as a command is invoked

it becomes frozen; the entire rest of the computation around the frozen command then

also freezes (in the same way that water behaves around ice), until we reach a handler

for the frozen command.

Finally we have evaluation contexts, which are sequences of evaluation frames.

The interesting case is u (t, [],n); it is this that gives us left-to-right call-by-value

evaluation of multihandler arguments.

Operational Semantics Finally, the operational semantics are given in Figure 3.4.

The essential rule here is R-HANDLE. This relies on a new relations regarding

pattern binding (Figure 3.5). r : T ← t --[Σ] θ states that the computation pattern r of

type T at ability Σ matches the normal form t yielding substitution θ. The index k is

then the index of the earliest line of pattern matches that all match. The conclusion of

the rule states that we then perform the substitutions θ that we get on the return value

nk to get our result. This is given type B.

R-ASCRIBE-USE and R-ASCRIBE-CONS remove unneeded conversions from use

to construction. R-LET and R-LETREC are standard. R-ADAPT shows that an adaptor

applied to a value is the identity.

We have several rules regarding the freezing of commands. When handling a

command, we need to capture its delimited continuation; that is, the largest enclos-

ing evaluation context that does not handle it. R-FREEZE-COMM expresses that in-

voked commands instantly become frozen; R-FREEZE-FRAME-USE and R-FREEZE-

Chapter 3. Formalisation of Frank 14

m u m′ n c n′ m−→u m′ n−→c n′

R-HANDLE

k = min
i
{i | ∃θ.(ri, j : 〈∆ j〉A j← t j --[Σ] θ j) j} (rk, j : 〈∆ j〉A j← t j --[Σ] θ j) j

↑({((ri, j) j→ ni)i} : {〈∆〉A→ [Σ]B}) t u ↑((θ(nk) : B)

R-ASCRIBE-USE

↑(↓u : A) u u

R-ASCRIBE-CONS

↓↑(w : A) c w

R-LET

let f : P = w in n c n[↑(w : P)/ f]

R-LETREC

e = r→ n

letrec f : P = e in n′ c n′[↑({r→ letrec f : P = e in n} : P)/ f]

R-ADAPT

〈Θ〉 w c w

R-FREEZE-COMM

c R w c dc R we

R-FREEZE-FRAME-USE

¬(F [E] handles c)

F [dE [c R w]e] u dF [E [c R w]]e

R-FREEZE-FRAME-CONS

¬(F [E] handles c)

F [dE [c R w]e] c dF [E [c R w]]e

R-LIFT-UU
m u m′

E [m]−→u E [m′]

R-LIFT-UC
m u m′

E [m]−→c E [m′]

R-LIFT-CU
n c n′

E [n]−→u E [n′]

R-LIFT-CC
n c n′

E [n]−→c E [n′]

Figure 3.4: Operational Semantics

FRAME-CONS show how the rest of the context becomes frozen. These two rules rely

on the predicate E handles c. This is true if the context does indeed handle the com-

mand c; i.e. it is a context of the form u (t, [],u′) where u is a handler that handles c

at the index corresponding to the hole. Thus, the whole term is frozen up to the first

handler, at which point is it handled with R-HANDLE.

The R-LIFT rules then express that we can perform any of these reductions in any

evaluation context.

Pattern Binding We now discuss the pattern binding rules of Figure 3.5. The relation

p : A← wa θ states that a value pattern p of type A matches normal form w yielding

substitution θ. B-VAR states that any pattern w matches a value x, whilst B-DATA

states that a constructor pattern kw matches a construction term kp if each subpattern

pi matches an argument to the construction wi.

The rules regarding r : T ← t --[Σ] θ are more interesting. B-VALUE defers com-

Chapter 3. Formalisation of Frank 15

r : T ← t --[Σ] θ

B-VALUE

Σ ` ∆ a Σ
′

p : A← waθ

p : 〈∆〉A← w --[Σ] θ

B-REQUEST

Σ ` ∆ a Σ
′ E poisedfor c

∆ = Θ|Ξ c : ∀Z.B→ B′ ∈ Ξ (pi : Bi← wiaθi)i

〈c p→ z〉 : 〈∆〉A← dE [c R w]e --[Σ] θ[↑({x 7→ E [x]} : {B′→ [Σ′]A})/z]

B-CATCHALL-VALUE

Σ ` ∆ a Σ
′

〈x〉 : 〈∆〉A← w --[Σ] [↑({w}:{[Σ′]A})/x]

B-CATCHALL-REQUEST

Σ ` ∆ a Σ
′ E poisedfor c

∆ = Θ|Ξ c : ∀Z.B→ B′ ∈ Ξ

〈x〉 : 〈∆〉A← dE [c R w]e --[Σ] [↑({dE [c R w]e}:{[Σ′]A})/x]

p : A← waθ

B-VAR

x : A← wa [↑(w : A)/x]

B-DATA

k A ∈ D R (pi : Ai← wiaθi)i

k p : D R← k waθ

Figure 3.5: Pattern Binding

putation pattern matching onto value pattern matching. B-REQUEST expresses that a

computation pattern 〈c p→ z〉 matches a frozen computation dE [c R w]e if command

c is handled by the evaluation context E , and if the arguments to the command each

match a subpattern in the computation pattern.

The catchall pattern 〈x〉 matches any value and any command that is handled by

the current evaluation context; B-CATCHALL-VALUE and B-CATCHALL-REQUEST

express this. Observe that B-CATCHALL-REQUEST has the same constraints as B-

REQUEST; the computation pattern only matches a command if it could otherwise be

handled.

Chapter 4

Pre-emptive Concurrency

4.1 Motivation

Our schedulers in Section 2.1 rely on threads manually yielding. This co-operative con-

currency can be problematic as it leaves the responsibility of inserting yield commands

to the programmer, who may leave them out or not disperse frequently enough. Even

worse, the thread could get into some inescapable state without every yielding, starving

other threads of processor time. It would be simpler, fairer and safer to just use some

automatic way of yielding, thus taking the responsibility away from the programmer.

We express threads that automatically have yield commands inserted as pre-emptible

threads; we describe concurrency using pre-emptible threads as pre-emptive concur-

rency.

Consider the two programs below:

interface Stop = stop : Unit

interface Go = go : Unit

controller : {[Stop, Go, Console] Unit}

controller! = stop!; print "stop!" ; sleep 200000; go!; controller!

runner : {Int -> [Console] Unit}

runner x = printInt x; runner (x + 1)

We want a multihandler that uses the stop and go commands from controller to

control the execution of runner. The desired console output is 1 2 3 ... n stop!

(n + 1)..., running infinitely. The problem as it stands is that there is no way for

runner to be suspended whilst it is running; it will just infinitely run, never reducing

to a value and thus never giving control to the handler or to controller.

16

Chapter 4. Pre-emptive Concurrency 17

As an example, we show how we can approximate the desired behaviour using the

familiar Yield interface from Section 2.1.1.

runner : {Int -> [Console] Unit}

runner x = printInt x; yield!: runner (x + 1)

suspend : {<Yield> Unit -> <Stop, Go> Unit

-> Maybe {[Console, Yield] Unit} -> [Console] Unit}

suspend <yield -> r> <stop -> c> _ =

suspend unit (c unit) (just {r unit})

suspend <_> <go -> c> (just res) =

suspend res! (c unit) nothing

suspend unit <_> _ = unit

Running suspend (runner 0)controller! nothing then prints out 1 stop 2 stop

3 stop This is due to the same synchronisation behaviour that we saw in

Section 2.1.1; runner is evaluated until it becomes a command or a value, and then

controller is given the same treatment. Once both are a command or a value, pattern

matching is done.

We are, however, still operating co-operatively; the programmer has to manually

insert yield commands. Furthermore, in this case we yield far too often; it would be

more efficient to have a consistent, yet longer, period in between each yield command.

As such, we continue searching for a better solution.

4.2 Relaxing

One approach is to relax the rules for pattern matching with the catchall pattern 〈x〉.
Currently the catchall pattern only matches commands that the handler would other-

wise handle; we propose relaxing the rules to match any command, that may not be

handled by the current handler. The key to implementing this lies in the pattern binding

rules of Figure 3.5; specifically B-CATCHALL-REQUEST.

The crux is that the command c that is invoked in the frozen term dE [c R w]e must

be a command offered by the extension Ξ; that is, it must be handled by the current

use of R-HANDLE. Refer back to the example of Section 4.1. This rule means that the

catch-all pattern <_> in the final pattern matching case of suspend can match against

stop or go, as they are present in the extension of the second argument, but not print

commands; although the Console interface is present in the ability of controller, it

is not in the extension in suspend.

Chapter 4. Pre-emptive Concurrency 18

B-CATCHALL-REQUEST-LOOSE

Σ ` ∆ a Σ
′

((((
(((hhhhhhhE poisedfor c ���

��XXXXX∆ = Θ|Ξ (((
((((

((hhhhhhhhhc : ∀Z.B→ B′ ∈ Ξ

〈x〉 : 〈∆〉A← dE [c R w]e --[Σ] [↑({dE [c R w]e}:{[Σ′]A})/x]

Figure 4.1: Updated B-CATCHALL-REQUEST

In the interests of pre-emption, we propose to remove this constraint from B-

CATCHALL-REQUEST, replacing the rule with B-CATCHALL-REQUEST-LOOSE as

seen in Figure 4.1. The key constraint that has been removed is c : ∀Z.B→ B′ ∈ Ξ,

which requires that the frozen command must be present in the argument extension

Ξ. The constraint E poisedfor c just states that the evaluation context containing the

frozen command will handle c; we also do away with this, as we do not necessarily

want to handle the command here. This lets us change runner back to its original

form, and update suspend like so:

runner : {Int -> [Console] Unit}

runner x = printInt x; runner (x + 1)

suspend : {Unit -> <Stop, Go> Unit

-> Maybe {[Console] Unit} -> [Console] Unit}

suspend <r> <stop -> c> _ =

suspend unit (c unit) (just r)

suspend <_> <go -> c> (just res) =

suspend res! (c unit) nothing

suspend unit <_> _ = unit

Now when we run suspend (runner 0)controller! nothing, the suspend han-

dler can match the catchall pattern <r> against the print commands in runner. This

prints out 1 stop! 2 stop! 3 stop! ... as before.

4.3 Freezing

The approach of Section 4.2 can only interrupt command invocations. If runner were

instead a sequence of pure computations — such as 1 + 1; 1 + 1; 1 + 1 — we

would be unable to interrupt it.

As such, we make a more significant change to the semantics of Frank. We adapt

the syntax so that any term may become frozen, and not just commands; this is reflected

in Figure 4.2. In Figure 4.3 we see additional rules for freezing arbitrary uses and

the surrounding computations. We can freeze arbitrary constructions in an identical

Chapter 4. Pre-emptive Concurrency 19

(uses) m ::= . . . | dE [c R w]e | dme
(constructions) n ::= . . . | dE [c R w]e | dme
(use values) u ::= x | f R | ↑(v : A)

(non-use values) v ::= k w | {e}
(construction values) w ::= ↓u | v
(normal forms) t ::= w | dE [c R w]e | dme
(evaluation frames) F ::= [] n | u (t, [],n) | ↑([] : A)

| ↓[] | k (w, [],n) | c R (w, [],n)

| let f : P = [] in n | 〈Θ〉 []
(evaluation contexts) E ::= [] | F [E]

Figure 4.2: Runtime Syntax, Updated with Freezing of Uses

R-FREEZE-USE

m u dme

R-FREEZE-FRAME-USE

F not handler

F [E [dme]] u dF [E [m]]e

R-FREEZE-FRAME-CONS

F not handler

F [E [dme]] c dF [E [m]]e

Figure 4.3: Freezing Uses

fashion, substituting m for n. These rules rely on an extra predicate F not handler ,

which is true unless F is of the form u (t, [],n). Frozen terms behave very much like

frozen commands, freezing the entire computation up to the nearest handler. Finally,

we supplement the pattern binding rules with the rule in Figure 4.4, which shows how

a computation becomes unfrozen. A frozen computation dme can match against the

catchall pattern 〈x〉; the suspended, thawed computation {m} is then bound to x in the

continuation.

We can simply reuse the suspend handler from Section 4.2. Everything works

largely the same; we run the leftmost argument until it freezes, invokes a command or

is a value, at which point we start evaluating the next argument. The frozen term can

then be bound to the catch-all pattern, if this is the pattern that matches.

However, observe that the frozen term is automatically re-handled at the closest

handler. This is problematic; we might have a handler for another effect, such as

runState, before the suspend handler. In this case, runState would automatically

resume runner when it freezes; we would still have the same problem of starvation,

as control would never rise to suspend. This problem would be solved if we had

finer-grained control over when to resume a frozen computation, so we could choose

to resume the frozen computation at suspend and not at runState.

Chapter 4. Pre-emptive Concurrency 20

B-CATCHALL-FREEZE-USE

Σ ` ∆ a Σ
′

〈x〉 : 〈∆〉A← dme --[Σ] [↑({m}:{[Σ′]A})/x]

Figure 4.4: Thawing Computations.

4.4 Yielding

Observe that the freezing approach of Section 4.3 ends up reimplementing a lot of the

behaviour of the freezing of ordinary commands, without adding much new behaviour.

Furthermore, the term gets automatically unfrozen at the closest handler, severely lim-

iting control over computations. It turns out that we can get the exact same behaviour

by just inserting a command invocation into the term instead, and handling this as

normal.

Once again, the simple Yield interface from Section 2.1 can be used here. Whilst

the interface itself sounds very boring, its use here comes from the fact it freezes the

rest of the computation around it up until the next Yield handler. Our new system

is simple; whenever a term reduces underneath a handler for Yield effects, we insert

an invocation of the yield command before the reduct. This is expressed formally in

Figure 4.5. We refer to F as described in Chapter 3 supplemented with this rule as

FN D .

R-YIELD

n c n′ F allows yield

F [n] u F [yield!;n]

Figure 4.5: Inserting Yields

Note that R-YIELD-EF relies on the predicate F allows c. For any frame apart

from argument frames (i.e. u (t, [],n)), F allows c = false. In this case, it is defined as

follows;

↑(v : {〈∆〉A→ [Σ]B}) (t, [],n) allows c = Ξ|t| allows c

where ∆|t| = Θ|t||Ξ|t|

(t, [],n) allows c =false

For an extension Ξ, the predicate Ξ allows c is true if c ∈ I for some I ∈ Ξ.

Chapter 4. Pre-emptive Concurrency 21

Informally, F allows c is true when F is a handler, and the extension at the hole

contains an interface which offers yield as a command. For instance, if a handler had

type {<Yield>X -> Y -> [Yield]X}, the first argument would be allowed to yield

but the second would not.

We also make use of an auxiliary combinator ; . This is the traditional sequential

composition operator snd x y 7→ y, where both arguments are evaluated and the result

of the second one is returned. In the context of R-YIELD-EF this means we will

perform the yield operation and then the use m, but discard the result from yield.

Observe that this gives us fine-grained control over which parts of our program

are pre-emptible. The programmer can simply insert Yield into the adjustment of the

multihandler arguments which should be pre-emptible. This is one improvement over

the system of Section 4.3; previously every thread was interruptible. Another benefit is

that we define fewer new rules and constructs. We also benefit from the choice of when

to resume a computation; in the previous system computations were automatically

unfrozen at the nearest handler, but this problem is fixed in FN D . Finally, we can write

custom handlers for yield commands, whilst the unfreezing rules in Figure 4.4 was

fixed at just restarting the continuation.

Nondeterminism This system, and the system from Section 4.3, are both nondeter-

ministic. This is because at any point we have the opportunity to either invoke yield

(respectively freeze the term), or continue as before.

Consider running hdl (print "A")(print "B"), for some binary multihandler

hdl. We could evaluate print "A" first and then print "B", or freeze print "A"

and evaluate print "B" first. Both of these would obviously result in different things

being printed to the console.

4.5 Counting

The system described in Section 4.4 is slightly problematic; we can insert a yield when-

ever we want. If we spend too much time inserting and handling yield commands little

other computation will be done. Furthermore, it is non-deterministic; we often have

the choice of either yielding or reducing as normal. We need a way to decide whether

or not to yield.

To combat this we supplement the operational semantics with a counter c. This

counter has two states; it could either be counting up, which is the form count(n) for

Chapter 4. Pre-emptive Concurrency 22

R-HANDLE-COUNT

k = min
i
{i | ∃θ.(ri, j : 〈∆ j〉A j← t j --[Σ] θ j) j} (rk, j : 〈∆ j〉A j← t j --[Σ] θ j) j

↑({((ri, j) j→ ni)i} : {〈∆〉A→ [Σ]B}) t;count(n) u ↑((θ(nk) : B));n⊕1

R-YIELD-CAN

F allows yield

F [m];yield u F [yield!;m];count(0)

R-YIELD-CAN’T

¬(F allows yield) m;count(n) u m′;c′

F [m];yield u F [m′];yield

Figure 4.6: Yielding with Counting

some n, or a signal to yield as soon as possible, which is the form yield. To increment

this counter, we use a slightly modified version of addition, denoted ⊕. This is simply

defined as:

x⊕y =

{
count(x+ y) if x+ y≤ t

yield otherwise

where t is the threshold at which we force a yield.

The transitions in our operational semantics now are of the form m;c u m′;c′. In

Figure 4.6 we give an updated rule for R-HANDLE — overwriting the previous rule

— and two new rules for inserting yields. We refer to F extended with the rules in

Figure 4.6 as FC .

R-HANDLE-COUNT replaces the previous rule R-HANDLE. If the counter is in the

state count(n), we perform the handling as usual, incrementing the counter by 1. Here

we use ⊕, which will set the counter to be yield if increasing the counter brings it over

the threshold value.

R-YIELD-CAN and R-YIELD-CAN’T dictate what to do if the counter is in the

yield state. If the evaluation context allows yield commands to be inserted we do so

and reset the counter. If not, but the term could otherwise reduce if the counter were

of the form count(k), then we make that transition, still maintaining the yield signal.

Note that we have a family of 4 R-YIELD-CAN’T rules, for each pair of use or

construction inside the evaluation context, which can be a use or a construction, in a

similar way to the R-LIFT rules in Chapter 3. We omit these for brevity.

All of the other rules from Figure 3.4 are then implicitly converted to m;c u m′;c

or n;c c n′;c; they may reduce at any point regardless of the state of the counter, but

Chapter 4. Pre-emptive Concurrency 23

they do not change the value of the counter.

Dolan et al. take a similar approach to this when investigating asynchrony in Multi-

core OCaml (Dolan et al. [2017]). They rely on the operating system to provide a timer

interrupt, which is handled as a first-class effect. Our system is more self-contained;

the timing is implemented within the language itself and doesn’t rely on the operating

system providing interrupts. Furthermore, we get control over when the timer can fire,

as we can choose to put Yield in the ability of interruptible terms.

Determinism Observe that the semantics of Frank equipped with the rules in Fig-

ure 4.6 are now deterministic; for any term and counter pair, there is only one possible

reduction we can make. This is helpful for the sake of implementation; it is always

clear which reduction to make at any point. We can characterise this by saying that

FC implements FN D ; the counting system gives a deterministic way to implement the

nondeterministic system. We have implemented the counting behaviour of FC into the

Frank interpreter.

Theorem 1 (FC Implements FN D .).

• For any use m and counter c, if m,c u m′,c′ in FC then m u m′ in FN D .

• For any construction n and counter c, if n,c u n′,c′ in FC then n u n′ in

FN D .

Proof. If we simply ignore the counters it’s clear that any time we insert a yield com-

mand in FC , it is valid to also do so on FN D .

In Section 4.7 we see a different approach, rather than a global counter, which also

implements the nondeterministic semantics.

4.6 Handling

Observe that we can now use the same suspend handler from Section 4.1, without

having to manually insert yield commands in runner. The following code will then

give the desired output, of a series of numbers printing interspersed evenly with stop

!;

runner : {Int -> [Console] Unit}

runner x = printInt x; runner (x + 1)

Chapter 4. Pre-emptive Concurrency 24

suspend : {<Yield> Unit -> <Stop, Go> Unit

-> Maybe {[Console, Yield] Unit} -> [Console] Unit}

suspend <yield -> r> <stop -> c> _ =

suspend unit (c unit) (just {r unit})

suspend <_> <go -> c> (just res) =

suspend res! (c unit) nothing

suspend <yield -> r> <c> = suspend (r unit) c!

suspend unit <_> _ = unit

The first argument is evaluated until the counter is greater than the threshold, at

which point a yield command is performed; the rest of the computation is then frozen

and the second argument is evaluated. Observe that the Yield interface is not present in

the adjustment of the second argument, so it is left to run as normal.

We might also want to make the controller — being the second argument — pre-

emptible; it might do some other computation in between performing stop and go

operations. We have to add Yield to the adjustment at the second argument, but also

add more pattern matching cases.

suspend <yield -> r> <yield -> c> p = suspend (r unit) (c unit) p

suspend <yield -> r> <c> p = suspend (r unit) c! p

suspend <r> <yield -> c> p = suspend r! (c unit) p

suspend <r> <c> p = suspend r! c! p

These let yield commands synchronise with each other, achieving fair scheduling,

as discussed in Section 2.1. It is annoying to write these by hand, as they take up a lot

of space and are orthogonal to the rest of the logic of the handler.

Fortunately, this process of resuming as many yields as possible can be automated

completely. Given a multihandler with m arguments, n of which have Yield in their

adjustment, we first try to resume and re-handle all n yield commands. After this we

try to resume all of the different permutations of n−1 yield commands, and so on until

we are trying to resume 0 yield commands.

These commands can be inserted generically at runtime. If no other hand-written

patterns match, we insert these patterns and try all of them. It is important to insert

the automatically resuming patterns after the rest of the patterns, as the multihandler

may want to handle yield commands some other way; we do not want to interfere with

this. This means we can program in a simpler, direct manner, easily toggling which ar-

guments should be interruptible by adding Yield to the corresponding interface. Auto-

matically inserting yield-handling clauses when combined with automatically inserting

yield commands then gives us pre-emptive concurrency at very little overhead.

Chapter 4. Pre-emptive Concurrency 25

R-HANDLE-GC
k = min

i
{i | ∃θ.(ri, j : 〈∆ j〉A j← t j --[Σ] θ j) j} (rk, j : 〈∆ j〉A j← t j --[Σ] θ j) j

↑({((ri, j) j→ ni)i}@c : {〈∆〉A→ [Σ]B}) t u ↑((θ(nk) : B)

ARG-INCREMENT

n c n′

↑({((ri, j) j→ ni)i}@c : {〈∆〉A→ [Σ]B}) (t,n,n) u

↑({((ri, j) j→ ni)i}@(incOrReset(c,∆|t|)) : {〈∆〉A→ [Σ]B}) (t,maybeYield(n′,c,∆|t|),n)

Figure 4.7: Updated Counting Rules

4.7 Starvation

Consider the following program;

echo : {String -> [Console, Yield] Unit}

echo st = print st; echo st

sched : {<Yield> Unit -> <Yield> Unit -> Unit}

sched unit unit = unit

tree : {[Console] Unit}

tree! = sched (echo "A ")

(sched (echo "B ") (echo "C "))

We would like tree! to print out "A B C A B C A B C ...". However, when

using FC with automatic insertion of yield commands, the result is "A B C B C B C

...". The echo "A " thread is starved of processor time. This happens because when

echo "B " yields the command is immediately handled by the lower sched handler

and echo "C " is ran (and vice versa).

What we need is for each multihandler to have its own counter, which is incre-

mented every time an argument to the multihandler reduces. When an argument to a

multihandler reduces when the counter is over the threshold, we insert a yield command

in front of the reduct.

This system is expressed formally in Figure 4.7. Every handler — just being a

collection of pattern matching rules {((ri, j) j→ ni)i} — is implicitly given a counter

c initialised at count(0). The first rule, R-HANDLE-GC1, expresses that counters are

removed when a handler is evaluated on fully-evaluated arguments. The second rule,

1Where GC stands for Garbage Collector.

Chapter 4. Pre-emptive Concurrency 26

ARG-INCREMENT, expresses that when an argument to a multihandler evaluates, we

increment the counter; if the counter is above the yielding threshold we insert a yield

command before the argument and reset the counter. ARG-INCREMENT relies on two

auxiliary functions, defined as;

incOrReset(c,∆ = Θ|Ξ) =


c if Yield 6∈ Ξ

c⊕1 if Yield ∈ Ξ and c 6= yield

count(0) if Yield ∈ Ξ and c = yield

maybeYield(n,c,∆ = Θ|Ξ) =

{
yield!;n if Yield ∈ Ξ and c = yield

n otherwise

We denote this system of F equipped with the rules in Figure 4.7 as FT .

Theorem 2 (FT Implements FN D .).

• For any use m if m u m′ in FT then m u m′ in FN D .

• For any construction n, if n u n′ in FT then n u n′ in FN D .

Proof. We can see that this holds by just erasing the counters from the multihandlers;

all transitions would be permitted in FN D .

We walk through an example evaluation of tree in FT . First, echo "A " re-

duces, increasing the counter at the upper sched handler. Once this counter passes

the threshold, we insert a yield before echo "A "; we now start evaluating the other

branch, sched (echo "B ")(echo "C "). While echo "B " reduces we increment

the counter at both sched handlers. Both counters then pass the threshold at the same

time. At this point the system can either choose to insert a yield at either of the two

sched handlers; let’s consider it chooses to insert one at the upper handler. Then

echo "A " is evaluated again as before. Once we resume computing sched (echo

"B ")(echo "C ") the counter state is maintained, so we immediately yield, give

control to echo "C " and continue.

In our implementation of FT , we avoid the nondeterminism caused by multiple

multihandler trying to yield by always choosing the lowest multihandler.

This system does not let threads starve; eventually, any thread gets processor time.

However, if we have a lot of deeply-nested handlers, a thread might have to wait a long

time to get processor time. It would be good to have a system where we can express

a bound on the amount of time that will pass before a thread gets processor time; this

remains as future work.

Chapter 4. Pre-emptive Concurrency 27

4.8 Soundness

We now state the soundness properties for our systems, as well as the subject reduction

theorem needed for each soundness proof.

Theorem 3 (Subject Reduction for FN D).

• If Φ;Γ [Σ]-- m⇒ A and m u m′ then Φ;Γ [Σ]-- m′⇒ A.

• If Φ;Γ [Σ]-- n : A and n c n′ then Φ;Γ [Σ]-- n′ : A.

Identical theorems hold for each of FC and FT . Previous work (Convent et al.

[2020]) has shown that subject reduction holds for F; as such the proofs for each of our

new systems amount to just showing the new reduction rules preserve types. Indeed,

even this just amounts to showing that inserting a yield command before a term does

not change the overall type of a term. Proofs of subject reduction for FN D , FC and

FT can be found in Section B.1.

Theorem 4 (Type Soundness for FN D).

• If ·; · [Σ]-- m⇒ A then either m is a normal form such that m respects Σ or there

exists a ·; · [Σ]-- m′⇒ A such that m−→u m′.

• If ·; · [Σ]-- n : A then either n is a normal form such that n respects Σ or there exists

a ·; · [Σ]-- n′ : A such that n−→c n′.

Again, we have identical theorems for FC and FT . The proof of type soundness

proceeds by induction on ·; · [Σ]-- m⇒ A and ·; · [Σ]-- n :A. None of our extensions involve

new typing judgements, so we do not add any new cases to the proof of type soundness

for F(Convent et al. [2020]). Our main obligation is to show that systems equipped

with a counter never get stuck in a state where they cannot reduce due to the counter

blocking; this is shown in Section B.2.

Chapter 5

Implementation

In this section we introduce the asynchronous effects abstraction, and introduce the

Frank library for programming with them. Our design closely follows Æff (Ahman and

Pretnar [2020]), the only existing implementation for programming with user-defined

asynchronous effects.

One can consider the traditional treatment of shallow effect handling as having

three stages. First an operation op is invoked, with arguments V and continuation

λx.M. Then the handler for op — being the implementation of op — is evaluated with

arguments V until it returns some value W . Finally, the continuation of the caller is

resumed by binding W to x in M, where this resumed continuation is possibly rehandled

or in some other context.

What makes effect handling synchronous is that the operation call op blocks until

the continuation M is resumed. This means that for every algebraic effect, the rest of

the calling code has to wait for the handler to be performed, even when the results

are not immediately needed. The asynchronous treatment of effect handling decouples

these three stages; each of invoking an effect, evaluation of the handler, and resumption

of the caller are separate. This permits the non-blocking invocation of effects; we can

invoke an operation, continue with other work, then if and when we need the result of

the operation we can choose to block.

Asynchronous effects are used for writing multi-threaded programs. A single

thread might handle some operations and also perform other ones, which themselves

are handled by other threads. Rather than the binary division of caller and handler, a

single thread can both invoke and handle asynchronous operations. In the rest of this

section we explain this behaviour by example, and introduce our library for program-

ming with asynchronous effects in Frank.

28

Chapter 5. Implementation 29

5.1 Communication

Consider a program F which lets the user scroll through an seemingly infinite feed of

information (example due to Ahman and Pretnar [2020]). The program displays each

item in its cache of data as the user scrolls; the program simulates being infinite by

making a request for another cache of data whenever the user is nearly at the end of the

current cache. In this way, the user never notices the feed pausing to download more

data; they happily scroll to their heart’s content.

The client thread F would be run in parallel with a user interface controller, to

handle UI interaction, and a server, which supplies extra data when needed. The client

would then interact with these other threads by sending signals and receiving inter-

rupts. One can imagine these as a further division of operation calls: a thread sends

a signal to request another thread to perform some operations, and the other threads

receive a corresponding interrupt. For instance, F would send a request signal to ask

the server to send a new cache of data; F would then receive a response x interrupt,

where x is the new data from the server.

Despite this example, we remark that signals do not require a corresponding inter-

rupt as response and vice versa. For instance, F would perform display d signals, as

requests to the UI controller to display data d; the client then doesn’t need a response

from the UI controller. Similarly, F receives nextItem interrupts whenever the user

requests to see a new item. The system could also receive interrupts and send signals;

for instance we could have a timer interrupt, send by the operating system at a regular

interval.

We define interrupt handlers to dictate how to act when an interrupt is received. An

interrupt handler is a function of type S -> Maybe {R}, where S is a sum type made

up of the possible interrupts that can be received; an example is the Feed type defined

below. The return type of the handler is Maybe {R} as we can choose not to handle the

interrupt by returning nothing; this could be because it is the wrong type of signal,

or if some other condition regarding the interrupt is not fulfilled1. An example of an

interrupt handler is boringFeed;

data Feed = nextItem | request Int

| response (List Int) | display Int

1An interrupt handler which inspects the body of the interrupt and chooses whether or not to evaluate
to nothing or just thk is called a guarded interrupt handler. We see an example of guarded
interrupt handling in Section 6.1.

Chapter 5. Implementation 30

boringFeed : {Feed -> Maybe {[Console] Unit}}

boringFeed nextItem = just {print "10"}

boringFeed _ = nothing

The interrupt handler boringFeed prints out 10 on receipt of a nextItem interrupt; if

it receives any other interrupt it does nothing. From now on we also call an interrupt

handler a promise. We say that a promise which reduces to (just thk) is fulfilled.

For an interrupt handler to be used, a thread must install it. Once installed, the

interrupt handler is evaluated against every interrupt that the installing thread receives.

We go into more depth on this process in the next section.

5.2 An Interface for Asynchronous Effects

To make our ideas more concrete, we introduce the Frank interface used for program-

ming with asynchronous effects. First of all we introduce the datatype used to track

the state of an installed promise, Prom.

data Prom X = prom (Ref (PStatus X))

data PStatus X = waiting | done X | resume {X -> Unit}

A value of type Prom X is a reference to a value of type PStatus X. It is stored

as a reference as we have to write to this cell from two locations; the interrupt handler

itself updates the cell once it has been evaluated, and the handler for await commands

also has to access the cell when the promise is awaited.

A promise has three possible states, each a different constructor for PStatus. The

first, waiting, expresses that the promise has not yet been fulfilled. The second, done

x, expresses that the promise has completed and resulted in a value x. The third

option, resume cont, is used when a promise is awaited but has not yet completed;

in this case, the handler for await writes the continuation of the caller to resume.

The interrupt handler then automatically resumes this once it is fulfilled. Ideally, Pid

should be an abstract type; the programmer should not be able to directly look inside

an installed Pid from the point of view of a thread. The only way the programmer

should get the value out of a Pid is by awaiting the promise.

interface Promise S =

promise R : {S -> Maybe {[Promise S, RefState, Yield] R}}

-> Prom R [Promise S, RefState, Yield]

| signal : S -> Unit

| await R : Prom R [Promise S, RefState, Yield] -> R

Chapter 5. Implementation 31

The entire Promise interface is polymorphic in the type of signals that threads can

perform. This will be a datatype such as Feed, as discussed earlier. The commands

themselves are polymorphic in the result type R of the interrupt handlers being installed

or awaited.

The promise command is used to install an interrupt handler; it takes an inter-

rupt handler and returns a Prom R value. The interrupt handler can perform further

Promise S effects, and must also have access to the RefState interface. This is be-

cause when installing the promises we modify them to automatically write to their

Prom cell once they fire. The Yield interface is also present so that interrupt handlers

are themselves pre-emptible when executed. We can also parametrise the Promise in-

terface by effects that the interrupt handlers can perform. For instance, if using the

Promise S [Console] interface interrupt handlers also perform Console effects and

further Promise S [Console] effects. This is due to implicit effect polymorphism as

discussed in Chapter 2. A stack of installed interrupt handlers is kept for each thread.

The signal command takes a value of the S type and returns unit. When han-

dling signal sig, all other threads are interrupted; they stop whatever they were

doing, and all installed interrupt handlers now have to handle this signal. We go

through each interrupt handler ih in the stack. Recall that an interrupt handler is just

a function of type S -> Maybe {R}. Thus we simply apply ih to the interrupt sig. If

(ih sig) nothing we leave ih on the stack and look at the next interrupt handler.

If (ih sig) (just thk), the interrupted thread immediately performs the thunk

thk before continuing with the interrupted computation. In this case, ih is removed

from the stack.

Finally, the await command takes a Prom R value and returns a value of type R.

At this point, we inspect the promise state as stored in reference. If the promise is still

waiting, we take the continuation cont offered up by await and store it in the cell

as resume cont. If the promise is done we immediately resume the continuation with

the stored value. At this point the cell should not have a continuation in it, as it’s not

possible for multiple threads to await a single promise. As such, we just safely exit.

When a promise is fulfilled, it automatically looks inside its associated Prom cell.

If the status is just waiting, the promise just writes the returned value to the cell as

done x. If there is a resumption in the cell, the promise immediately resumes it. There

should not already be a done x value in the cell, as only the given promise and the

handler for the promise interface should have access to it.

Chapter 5. Implementation 32

5.3 In Action

Let’s revisit the infinitely scrolling feed example from earlier, and consider the client

thread, F . The bulk of the client is an interrupt handler for nextItem messages. The

body of this handler will display the next datum and reinstall the nextItem interrupt

handler, as well as perform any requests for extra data. The type signature of the body

of our handler will be:

onNext : {List Int -> Maybe (Prom (List Int) [InThread])

-> [InThread] Unit}

where [InThread] is an interface alias for [Promise Feed [Console], Console,

RefState, Yield]. The first argument to onNext is the currently stored cache of data.

The second argument is a Prom cell which may not be present; this stores the promise

that waits for a response from the server when a request for extra data is made. We

use a helper function, displayRestart, to display the next item from the cache and

reinstall the nextItem promise:

displayRestart : {List Int -> Maybe (Prom (List Int) [InThread])

-> [InThread] Unit}

displayRestart cache p =

signal (display (head cache));

let cache = pop cache in

promise { nextItem -> just { onNext cache p } | _ -> nothing };

unit

For the sake of simplicity we assume that the cache size is fixed to 10 items. Then

whenever we have 3 or less items in the cache, and another request is not already in

progress, we want to issue a new request for data.

onNext xs nothing =

if (len xs == 3)

{ let r = promise {(response x) -> just {x} | _ -> nothing} in

signal (newData (last xs));

displayRestart xs (just r) }

{ displayRestart xs nothing }

Observe that if the length of the cache is 3 we first install an interrupt handler for

response interrupts, and then issue a newData signal; we know that the server will

respond to the newData interrupt it receives with a response message. As mentioned

before, not every signal sent has a corresponding interrupt that will later be received;

for instance, the display signal is sent without requiring an interrupt to respond, and

Chapter 5. Implementation 33

the nextItem interrupt is received without the client sending a signal to cause it to

come in.

Once the request for new data has been issued, we re-invoke onNext, but this time

carrying the promise. This leads us to the other branch of onNext;

onNextList cache (just p) =

if (len cache == 0)

{ displayRestart (await p) nothing }

{ displayRestart cache (just p) }

Here we check if we are at the end of the current cache. If we are, we await the promise,

binding newCache to the result. Once the promise p is fulfilled we proceed as normal

with the cache returned from the promise.

The client then installs the nextItem interrupt handler with (promise {nextItem

-> just {onNext startCache nothing} | _ -> nothing}).

5.4 Modelling Asynchrony

In this section we address how we model asynchrony in the single-threaded setting of

Frank. We use the system as described in Chapter 4 to automatically force threads to

yield after a certain amount of reductions. To handle these yield commands we use

a scheduler similar to the example in Section 2.1.2, where we have a collection of

threads, cycling through in order.

Earlier we mentioned that when a thread sends a signal, all other threads immedi-

ately perform the body of any fulfilled promises. This is not true in practice; all other

threads are notified that they should perform the bodies of the fulfilled promises, but

they only do so when the performing thread gets processor time. Specifically, if an

interrupt handler ih for a suspended thread thr reduces to (just thk) on receipt of

an interrupt, we update the suspended thread’s thunk in our collection to {thk!; thr

!}. As such, the body of the a fulfilled interrupt handler does not actually get executed

until the thread gets to run again.

This contrasts with Æff, where any process may run at any point. However, with

the pre-emptive concurrency of our system we can easily recreate this. Another way in

which our system and Æff differ is that when a thread receives an interrupt in our sys-

tem all interrupt handlers must immediately handle it, and the rest of the computation

may not reduce. In Æff, this is not the case; a computation may continue to otherwise

evaluate before it handles an interrupt.

Chapter 6

Examples

Imagine you wanted to implement a structure for asynchronous programming, such

as async-await. We could add this as a new primitive to our language; we change

the compiler to add new syntax, then the new type-checking rules, then we have to

implement the semantics; then we have to do this all over again if we want a new

feature for asynchronous programming. This is cumbersome, boring, and worst of all

takes the implementations outside of the language; we cannot tweak them, they are

opaque.

The alternative is to use asynchronous effects as the building block. In this section,

we show how several useful features for asynchronous programming can be imple-

mented on top of the Promise library.

6.1 Pre-emptive Scheduling

Whilst we have already shown how to pre-emptively schedule several threads in Sec-

tion 4.6, we might want to have a more robust way of doing this; the multihandler

strategy is fixed in a left-to-right evaluation order. In this method, we can just have

a single source sending out stop and go messages, implementing a potentially more

sophisticated scheduling strategy than mere round-robin.

For simplicity’s sake, we just display a version with only one thread, however this

approach can easily be generalised to pre-empt multiple threads by adding ID fields

to the stop and go signals and using guarded interrupt handlers for goPromise and

stopPromise.

data Schedule = stop | go

34

Chapter 6. Examples 35

goPromise : {Sig -> Maybe {[Promise Schedule] Unit}}

goPromise go = just {unit}

goPromise _ = nothing

stopPromise : {Sig -> Maybe {[Promise Schedule] Unit}}

stopPromise stop = just {await (promise goPromise);

promise stopPromise; unit}

stopPromise _ = nothing

preempt : {{X} -> [Promise Schedule] X}

preempt comp = promise stopPromise; comp!

We can easily make a computation pre-emptible by just installing stopPromise before

the main body, as in the function preempt.

Once a pre-emptible computation receives a stop interrupt, it installs goPromise

and immediately awaits it. This blocks the rest of the computation from executing until

a go interrupt is received. When such a signal does come in, goPromise is fulfilled;

the body of the interrupt handler does nothing, but it unblocks the rest of the thread’s

computation. At this point, the rest of the body of stopPromise is also unblocked, so

another stopPromise is installed.

Now all that remains is to have a source of stop and go signals. This could just be a

standard round-robin scheduler or some more sophisticated strategy. One disadvantage

to our approach is that an adversarial thread could just send stop and go signals of its

own, overriding the scheduler. Using session types (Honda et al. [1998]) to restrict

communication protocols could be used to solve this problem; we leave this to future

work.

6.2 Futures

We can implement the asynchronous post-processing of results, or futures (Schwing-

hammer [2002]), with asynchronous effects. Futures are useful if we want to asyn-

chronously perform some action once another promise (or future) has been completed.

In the context of a web application, this might be updating the application’s display

once some remote call for data has finished. Observe that this differs from just await-

ing the remote call and then updating once we have this; we do not want to block

everything else from running, rather perform this action asynchronously, when the

promise is complete.

Chapter 6. Examples 36

data Fut = newData (List Int) | result Int

futureND : {Pid R [Promise Fut] -> {R -> [Promise Fut] Z} -> Sig

-> Maybe {[Promise Fut] Z}}

futureND p comp (newData _) = just { let res = await p in comp res}

futureND _ _ _ = nothing

When calling futureND we supply a promise of result type R and a computation of

type R -> Z. We then await the promise, and once we have a value (of type R) evaluate

the supplied computation on this value. An example using this system is:

let recv = promise { (newData xs) -> just {xs} | _ -> nothing} in

let prod = promise {s -> futureND recv product s} in

promise {s -> futureND prod {x -> signal (result x)} s}

where we, upon receipt of a newData interrupt, take the product of the list element-

wise and send another signal with this result. All three of these promises are triggered

by the same signal; recv is executed first, which is awaited by prod. When prod is

fulfilled the final promise is unblocked and the result signal is sent. This behaviour

depends on a single interrupt being able to trigger many interrupt handlers at once.

6.3 Async-Await

Our asynchronous effects system can express the familiar async-await abstraction.

This had previously been implemented in Frank by forking new threads, which were

then handled with a scheduler like that in Section 2.1.2. We implement it with asyn-

chronous effects by using a controller thread, which will send tasks to one of a set of

worker threads. When these worker threads are idle, they are instantly skipped; hence

there is not much inefficiency associated with having extra idle workers.

We use three types of signal here. The calling thread sends call messages, where

the arguments are the computation to run and the call ID. The controller handles call

interrupts and sends work interrupts; the arguments to this signal are the computation

again, the call ID and the ID of the worker who is designated to run this task. Finally,

the worker sends result signals when it has finished computing; arguments to this are

the result and the call ID.

data Async R = result R Int | call {R} Int

| work {R} Int Int

async : {[{String} -> Ref Int

Chapter 6. Examples 37

-> [Promise (Async String)] Pid String [Promise (Async String)]

async proc callCounter =

let callNo = read callCounter in

let waiter = {s -> resultWaiter callNo s} in

signal (call proc callNo);

write callCounter (callNo + 1);

waiter

We use this function to issue a new asynchronous task. We keep a global counter to

give each call a unique identifier. We then install a promise resultWaiter that waits

for a result and simply returns it, if the call numbers match. Finally we send a call

signal with the process and return the result interrupt handler. Observe that async just

returns the result promise; we just use the given await operation to await.

The controller installs an interrupt handler for call interrupts. The thread tracks

which threads have a task running; if there is a free worker it then sends a work signal,

containing the computation and the ID of the worker who should perform it. The con-

troller then installs a promise to update the active status of the corresponding worker

once a result interrupt is received from the worker.

Workers listen for a work interrupt; when one comes in with their ID in the pay-

load, they simply perform the computation and send a result signal with the result.

This result signal triggers the interrupt handler installed by the async caller, but also

triggers the promise installed by the controller, to inform it that the worker is now idle.

This ability to trigger multiple promises with one message is a subtle but useful feature

of the asynchronous effects system.

6.4 Cancelling Tasks

Because we are working in a language equipped with effect handlers, we can easily

write a handler for the Cancel = cancel : Unit effect, which just gets rid of the contin-

uation and replaces it with some default value (e.g. unit). We can use this to cancel

a task issued with async. Recall that tasks issued with async-await run on their own

thread; we can use the cancel effect to throw away the continuation of the entire thread

and wipe the slate clean. To make our worker threads cancellable, we change the in-

terrupt handler for work interrupts to install the canceller promise before the worker

starts running the task:

canceller : {Int -> Int -> Sig -> Maybe {[Promise] Unit}}

canceller wid callId (cancelCall callId’) =

Chapter 6. Examples 38

if (callId == callId’)

{ just {promise {s -> worker wid s}; cancel!} }

{ nothing }

canceller _ _ _ = nothing

The canceller promise reinstalls the worker promise before performing the CAN-

CEL, so that the thread can eventually run another task again after the current task is

done. The controller also is modified to install an interrupt handler for cancelCall

interrupts; this interrupt handler sets the corresponding worker’s state to idle.

The realisation of cancellable function calls in Æff (Ahman and Pretnar [2020])

was to start awaiting a new promise that will never be fulfilled. This leads to a space

leak as unfulfilled promises build up. Our approach improves on this as the cancelled

calls do truly disappear.

However, we have to modify the handler for the Promise effect to correctly can-

cel threads. When we fulfill a promise, we take the result computation and compose

this with the interrupted computation and re-handle this single computation with the

promise handler. At this point, we also now handle Cancel effects, so that we remove

the whole thread. This is a point for improvement; handling the Cancel effect and

handling Promise effects are orthogonal, and should be treated separately. We leave it

as future work to further investigate and refine interactions between traditional effects

when installed by promises.

6.4.1 Interleaving

With the Cancel effect, we can also define the useful interleave combinator (Leijen

[2017a]). This lets us issue two tasks on two different threads, using the call signal

as defined in Section 6.3. We then install an interrupt handler for result interrupts;

if a result interrupt corresponds to one of the installed threads we cancel the other

thread using cancelCall and return the received result. This lets us write timeouts

for functions, where we interleave a potentially long-running request with a timer;

we cancel the request if it takes too long. We can also run two identical requests to

different services and just take the result of the one that returns first.

Observe that interleave is just a slight modification of async as defined earlier.

By taking asynchronous programming structures outside of the language implemen-

tation — where they are opaque black boxes — and implementing them within the

language itself, we hope that programmers will be able to easily craft their own tools

specifically to what they need.

Chapter 7

Conclusion

We conclude with a discussion of the achievements, some limitations of our work, and

possible future work.

In Chapter 4 we gave a simple, natural way to accommodate pre-emptive concur-

rency into Frank. Our solution is particularly nice as it doesn’t rely on external signals,

like in Multicore OCaml (Dolan et al. [2017]). Our system lets the programmer easily

decide which threads to make pre-emptible, at virtually no overhead.

In Chapter 5 we explained the abstraction of asynchronous effects, and how they

are implemented in Frank. In Chapter 6 we showed how this system can be used to im-

plement common, useful structures for asynchronous programming. We can recreate

the behaviour of Æff, the only other language with support for asynchronous effects,

and show how asynchronous effects in the presence of synchronous effects can be used

to cancel calls.

We hope that one of the outcomes of this project and related work (Ahman and

Pretnar [2020], Leijen [2017a], Dolan et al. [2017]) is taking the definition of asyn-

chronous programming features away from the realm of low-level operating system

schedulers and opaque web programming interfaces and offering them up to the user.

Synchronous effect handlers have shown to achieve a similar goal with respect to ex-

ception handling and other control flow operations; it is our hope that asynchronous

effect handling could do the same.

7.1 Limitations and Future Work

Type System The implementation of asynchronous effects as discussed does not

track asynchronous effects, and is untyped. Ahman and Pretnar have shown that this is

39

Chapter 7. Conclusion 40

possible; it would be interesting to see a typed asynchronous effects system embedded

into another language.

Interactions between Synchronous and Asynchronous Effects Handling effects

performed by interrupt handlers can be quite a challenge sometimes. Effects like

Console and random number generation are fairly straightforward to handle, as we

can let them pass up to the top-level and handle with a single handler. However, han-

dling something like the State effect is trickier; we cannot use the same State handler

to handle everything as this would share the state between all threads. Threading the

State handler through the Promise handler is cumbersome; it would be better to leave

the Promise handler to be.

Communication Protocols Our system uses the fairly simple communication proto-

col where every message gets sent to every thread. Naturally, two threads might want

to communicate secretly, without other threads eavesdropping. A system of communi-

cation protocols similar to session types (Honda et al. [1998]) could solve this.

A Higher Degree of Asynchrony There are several degrees of asynchrony possible

with a system like ours. We restrict one thread to run at any given time, with fulfilled

promises only evaluating when the corresponding thread gets processor time. Æff take

the other approach; any thread can compute at any time. There is an in-between, where

the bodies of interrupts may be evaluated out-of-turn. It would be interesting to further

explore the differences between different models of asynchrony and their benefits and

limitations.

Sophisticated Yielding Strategies Although our yielding strategy in Section 4.7

does not allow threads to starve due to lack of processing time, we do not have a

bound on how much time can pass before a thread gets processor time. It would be

good to either find a bound for FT or design a new system where a bound can be easily

expressed.

Implementations in Other Languages We postulate that our Promise interface should

be simple enough to reimplement in other languages; it would be interesting to try to

do so in another language like Links or Koka and see whether our claim holds.

Bibliography

Danel Ahman and Matija Pretnar. Asynchronous effects. arXiv preprint

arXiv:2003.02110, 2020.

Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers.

Journal of logical and algebraic methods in programming, 84(1):108–123, 2015.

Edwin Brady. Programming and reasoning with algebraic effects and dependent types.

In Proceedings of the 18th ACM SIGPLAN international conference on Functional

programming, pages 133–144, 2013.

Lukas Convent. Enhancing a modular effectful programming language. PhD thesis,

MSc thesis, School of Informatics, The University of Edinburgh, 2017.

Lukas Convent, Sam Lindley, Conor McBride, and Craig McLaughlin. Doo bee doo

bee doo. J. Funct. Program., 30:e9, 2020.

Stephen Dolan, Leo White, and Anil Madhavapeddy. Multicore ocaml. In OCaml

Workshop, volume 2, 2014.

Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop, and Anil Mad-

havapeddy. Effective concurrency through algebraic effects. In OCaml Workshop,

page 13, 2015.

Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Madhavapeddy,

KC Sivaramakrishnan, and Leo White. Concurrent system programming with ef-

fect handlers. In International Symposium on Trends in Functional Programming,

pages 98–117. Springer, 2017.

Daniel Hillerström. Compilation of effect handlers and their applications in concur-

rency. MSc (R) thesis, School of Informatics, The University of Edinburgh, 2016.

41

Bibliography 42

Kohei Honda, Vasco T Vasconcelos, and Makoto Kubo. Language primitives and type

discipline for structured communication-based programming. In European Sympo-

sium on Programming, pages 122–138. Springer, 1998.

Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. ACM SIGPLAN

Notices, 48(9):145–158, 2013.

Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible effects: an alternative to

monad transformers. ACM SIGPLAN Notices, 48(12):59–70, 2013.

Daan Leijen. Koka: Programming with row polymorphic effect types. arXiv preprint

arXiv:1406.2061, 2014.

Daan Leijen. Structured asynchrony with algebraic effects. In Proceedings of the

2nd ACM SIGPLAN International Workshop on Type-Driven Development, pages

16–29, 2017a.

Daan Leijen. Type directed compilation of row-typed algebraic effects. In Proceedings

of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,

pages 486–499, 2017b.

Sam Lindley, Conor McBride, and Craig McLaughlin. Do be do be do. POPL, 2017.

Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with

bananas, lenses, envelopes and barbed wire. In Conference on Functional Program-

ming Languages and Computer Architecture, pages 124–144. Springer, 1991.

Benjamin C Pierce and David N Turner. Local type inference. ACM Transactions on

Programming Languages and Systems (TOPLAS), 22(1):1–44, 2000.

Gordon Plotkin and John Power. Algebraic operations and generic effects. Applied

categorical structures, 11(1):69–94, 2003.

Gordon D Plotkin and Matija Pretnar. Handling algebraic effects. arXiv preprint

arXiv:1312.1399, 2013.

Jan Schwinghammer. A concurrent lambda-calculus with promises and futures. Mas-

ter’s thesis, 2002.

Nicolas Wu and Tom Schrijvers. Fusion for free. In International Conference on

Mathematics of Program Construction, pages 302–322. Springer, 2015.

Appendix A

Remaining Parts of Formalism

43

Appendix A. Remaining Parts of Formalism 44

Φ ` p : AaΓ

P-VAR

Φ ` x : Aa x : A

P-DATA

k A ∈ D R (Φ ` pi : AiaΓ)i

Φ ` k p : D RaΓ

Φ ` r : T --[Σ] ∃Ψ.Γ

P-VALUE

Σ ` ∆ a Σ
′

Φ ` p : AaΓ

Φ ` p : 〈∆〉A --[Σ] Γ

P-CATCHALL

Σ ` ∆ a Σ
′

Φ ` 〈x〉 : 〈∆〉A --[Σ] x : {[Σ′]A}

P-COMMAND

Σ ` ∆ a Σ
′

∆ = Θ|Ξ c : ∀Z.A→B ∈ Ξ (Φ,Z ` pi : AiaΓi)i

Φ ` 〈c p→ z〉 : 〈∆〉B′ --[Σ] ∃Z.Γ,z : {〈ι|ι〉B→ [Σ′]B′}

Figure A.1: Pattern Matching Typing Rules

Appendix A. Remaining Parts of Formalism 45

Φ;Γ [Σ]-- m⇒ A

T-VAR

x : A ∈ Γ

Φ;Γ [Σ]-- x⇒ A

T-POLYVAR

Φ`R f : ∀Z.A ∈ Γ

Φ;Γ [Σ]-- f R⇒ A[R/Z]

T-APP

Σ
′ = Σ (Σ ` ∆i a Σ

′
i)i

Φ;Γ [Σ]-- m⇒{〈∆〉A→ [Σ′]B} (Φ;Γ [Σ′i]-- ni : Ai)i

Φ;Γ [Σ]-- m n⇒ B

T-ASCRIBE

Φ;Γ [Σ]-- n : A

Φ;Γ [Σ]-- ↑(n : A)⇒ A

Φ;Γ [Σ]-- n : A

T-SWITCH

Φ;Γ [Σ]-- m⇒ A A = B

Φ;Γ [Σ]-- ↓m : B

T-DATA

k A ∈ D R (Φ;Γ [Σ]-- n j : A j) j

Φ;Γ [Σ]-- k n : D R

T-COMMAND

Φ`R c : ∀Z.A→ B ∈ Σ (Φ;Γ [Σ]-- n j : A j[R/Z]) j

Φ;Γ [Σ]-- c R n : B[R/Z]

T-THUNK

Φ;Γ` e :C

Φ;Γ [Σ]-- {e} :{C}

T-LET

P = ∀Z.A
Φ,Z;Γ [/0]-- n : A Φ;Γ, f : P [Σ]-- n′ : B

Φ;Γ [Σ]-- let f : P = n in n′ : B

T-LETREC

(Pi = ∀Zi.{Ci})i

(Φ,Zi;Γ, f : P` ei :C)i Φ;Γ, f : P [Σ]-- n : B

Φ;Γ [Σ]-- letrec f : P = e in n : B

T-ADAPT

Σ `Θ a Σ
′

Φ;Γ [Σ′]-- n : A

Φ;Γ [Σ]-- 〈Θ〉 n : A

Φ;Γ` e :C

T-COMP

(Φ ` ri, j : Tj --[Σ] ∃Ψi, j.Γ
′
i, j)i, j

(Φ,(Ψi, j) j;Γ,(Γ′i, j) j [Σ]-- ni : B)i ((ri, j)i covers Tj) j

Φ;Γ` ((ri, j) j 7→ ni)i : (Tj→) j [Σ]B

Figure A.2: Term Typing Rules

Appendix A. Remaining Parts of Formalism 46

Σ ` ∆ a Σ
′

A-ADJ

Σ `Θ a Σ
′

Σ
′ ` Ξ a Σ

′′

Σ `Θ|Ξ a Σ
′′

Σ ` Ξ a Σ
′

A-EXT-ID

Σ ` ι a Σ

A-EXT-SNOC

Σ ` Ξ a Σ
′

Σ ` Ξ, I R a Σ
′, I R

Σ `Θ a Σ
′

A-ADAPT-ID

Σ ` ι a Σ

A-ADAPT-SNOC

Σ `Θ a Σ
′

Σ
′ ` I(S→ S′) a Σ

′′

Σ `Θ, I(S→ S′) a Σ
′′

Σ ` I(S→ S′) a Σ
′

A-ADAPT-COM

Σ ` S : I a Σ
′;Ω Ω ` S′ : I a Ξ Σ

′ ` Ξ a Σ
′′

Σ ` I(S→ S′) a Σ
′′

Σ ` S : I a Σ
′;Ω

I-PAT-ID

Σ ` s : I a Σ;s : Σ

I-PAT-BIND

Σ ` S : I a Σ
′;Ω

Σ, I R ` S a : I a Σ
′;Ω,a : I R

I-PAT-SKIP

Σ ` S a : I a Σ
′;Ω I 6= I′

Σ, I′ R ` S a : I a Σ
′, I′ R;Ω

Ω ` S : I a Ξ

I-INST-ID

s ∈ dom(Ω)

Ω ` s : I a ι

I-INST-LKP

a ∈ dom(Ω) Ω ` S : I a Ξ Ω(a) = I R

Ω ` S a : I a Ξ, I R

Figure A.4: Action of an Adjustment on an Ability and Auxiliary Judgements

Appendix A. Remaining Parts of Formalism 47

X ::= A |C | T | G | Z | R | P | σ | Σ | Ξ |Θ | ∆ | Γ | ∃Ψ.Γ |Ω

Φ`X

WF-VAL

Φ,X `X

WF-EFF

Φ, [E]`E

WF-POLY

Φ,Z `A

Φ`∀Z.A

WF-DATA

(Φ`R)i

Φ`D R

WF-THUNK

Φ`C

Φ`{C}

WF-COMP

(Φ`T)i Φ`G

Φ`T → G

WF-ARG

Φ`∆ Φ`A

Φ`〈∆〉A

WF-RET

Φ`Σ Φ`A

Φ` [Σ]A

WF-ABILITY

Φ`Σ

Φ` [Σ]

WF-PURE

Φ` /0

WF-ID

Φ` ι

WF-EXT

Φ`Ξ (Φ`R)i

Φ`Ξ, I R

WF-ADAPT

Φ`Θ

Φ`Θ, I (S→ S′)

WF-EMPTY

Φ` ·

WF-MONO

Φ`Γ Φ`A

Φ`Γ,x : A

WF-POLY

Φ`Γ Φ`P

Φ`Γ, f : P

WF-EXISTENTIAL

Φ,Ψ`Γ

Φ`∃Ψ.Γ

WF-INTERFACE

Φ`Ω (Φ`R)i

Φ`Ω,x : I R

Figure A.5: Well-Formedness Rules

Appendix B

Extended Proofs

B.1 Subject Reduction

Theorem (Subject Reduction for FN D).

• If Φ;Γ [Σ]-- m⇒ A and m u m′ then Φ;Γ [Σ]-- m′⇒ A.

• If Φ;Γ [Σ]-- n : A and n c n′ then Φ;Γ [Σ]-- n′ : A.

Proof. The proof proceeds by induction on the transitions u, c. We need only

address the R-YIELD rule, as all other rules have previously been shown to preserve

types (Convent et al. [2020]).

Case R-YIELD By the assumption we have that F allows yield. This only holds if the

context is of the form

F [] = ↑(v : {〈∆〉A→ [Σ]B}) (t, [],n)

where yield ∈ Ξ|t| and ∆|t| = Θ|t||Ξ|t|.

So assume that Φ;Γ [Σ]-- F [n] : B. Then by inversion on T-APP we have that

Φ;Γ [Σ′|t|]-- n : A|t| and Σ ` ∆|t| a Σ|t|. It follows then that Φ;Γ [Σ′|t|]-- (yield!;n) : A|t|,

and accordingly that Φ;Γ [Σ]-- F [yield!;n] : B.

Theorem (Subject Reduction for FC).

• If Φ;Γ [Σ]-- m⇒ A and m;c u m′;c′ then Φ;Γ [Σ]-- m′⇒ A.

48

Appendix B. Extended Proofs 49

• If Φ;Γ [Σ]-- n : A and n;c c n′;c′ then Φ;Γ [Σ]-- n′ : A.

Proof. Again we look at each of the new rules added by FC .

Case R-HANDLE-COUNT Follows from subject reduction for R-HANDLE, as the

terms are unchanged between the two rules.

Case R-YIELD-CAN Identical to R-YIELD from above.

Case R-YIELD-CAN’T Assume that Φ;Γ [Σ]-- E [m]⇒ A, and let mB. By the inversion

we have that m;count(k) u m′;count(k′); by subject reduction we have that mB.

It follows that Φ;Γ [Σ]-- E [m′]⇒ A.

Theorem (Subject Reduction for FT).

• If Φ;Γ [Σ]-- m⇒ A and m;c u m′;c′ then Φ;Γ [Σ]-- m′⇒ A.

• If Φ;Γ [Σ]-- n : A and n;c c n′;c′ then Φ;Γ [Σ]-- n′ : A.

Proof. Essentially identical to the above two proofs. R-HANDLE-GC just removes the

counter and otherwise acts identically to R-HANDLE. ARG-INCREMENT might insert

a yield, but only if it’s type-safe in the same way as before.

We could also argue for subject reduction by using the fact that FT and FC both

implement FN D , and FN D preserves types when reducing.

B.2 Type Soundness Proofs

Theorem 5 (Type Soundness for FN D).

• If ·; · [Σ]-- m⇒ A then either m is a normal form such that m respects Σ or there

exists a ·; · [Σ]-- m′⇒ A such that m−→u m′.

• If ·; · [Σ]-- n : A then either n is a normal form such that n respects Σ or there exists

a ·; · [Σ]-- n′ : A such that n−→c n′.

Proof. The proof proceeds by simultaneous induction on ·; · [Σ]-- m⇒ A and ·; · [Σ]-- n :A.

FN D does not much complicate the proof. We can insert a yield command at any

point when evaluating an argument to a handler that handles yield commands; this is

then obviously a normal form that respects Σ.I f theyield commandisnotinsertedthensoundness f ollows f rompreviousproo f (Conventet al. [2020]).

Appendix B. Extended Proofs 50

Theorem 6 (Type Soundness for FC).

• If ·; · [Σ]-- m⇒ A then either m is a normal form such that m respects Σ or there

exists a ·; · [Σ]-- m′⇒ A such that m−→u m′.

• If ·; · [Σ]-- n : A then either n is a normal form such that n respects Σ or there exists

a ·; · [Σ]-- n′ : A such that n−→c n′.

Proof. Here the main obligation is to show that the use of yield does not potentially

block a computation from reducing when it otherwise could, thus breaking type sound-

ness. When the counter is in the yield state, the only type of term it effects is E [m]. If

the evaluation context is a handler where the ability at the hole permits yield operations,

we insert a yield; this freezes the rest of the term around it, becoming a normal form.

If the evaluation context does not permit yields but the term could otherwise reduce

then it does so.

Theorem 7 (Type Soundness for FT).

• If ·; · [Σ]-- m⇒ A then either m is a normal form such that m respects Σ or there

exists a ·; · [Σ]-- m′⇒ A such that m−→u m′.

• If ·; · [Σ]-- n : A then either n is a normal form such that n respects Σ or there exists

a ·; · [Σ]-- n′ : A such that n−→c n′.

Proof. This proof is essentially the same as the above, showing that computation is

never blocked by a counter.

	Introduction
	Related Work
	Structure

	Programming in Frank
	Case Study: Cooperative Concurrency
	Simple Scheduling
	Forking New Processes

	Formalisation of Frank
	Pre-emptive Concurrency
	Motivation
	Relaxing
	Freezing
	Yielding
	Counting
	Handling
	Starvation
	Soundness

	Implementation
	Communication
	An Interface for Asynchronous Effects
	In Action
	Modelling Asynchrony

	Examples
	Pre-emptive Scheduling
	Futures
	Async-Await
	Cancelling Tasks
	Interleaving

	Conclusion
	Limitations and Future Work

	Bibliography
	Remaining Formalisms
	Extended Proofs
	Subject Reduction
	Type Soundness Proofs

