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Abstract

Air pollution is considered to be an important health risk, which is increased for chil-

dren, especially those with respiratory problems. Associations between the concentra-

tion of different pollutants and several indicators of respiratory problems in children,

such as visits to clinics and hospital emergency rooms, have been shown in previous

work, but none of them have demonstrated a causal effect. This dissertation establishes

for the first time, a causal effect between the concentrations of three air pollutants: air-

borne particles with an aerodynamic diameter of less than 2.5 micrometres (PM2.5),

nitrogen dioxide (NO2) and ozone (O3), and the respiratory rate of asthmatic adoles-

cents. To do so, a state-of-the-art causal discovery method has been used, evaluating

the causal relationship for a period of time of up to eight hours between the exposure

to the pollutant, and the response of the subjects’ breathing rate. In fact, for more than

20% of the tested time intervals from 1 minute to 8 hours, the three pollutants were

shown to directly affect the breathing rate of the subjects. Additionally, the exposure-

response relationship has been studied for the three pollutants. For each of them, in

the majority of the causal links found, an increase in the pollutant concentration to a

higher value than the average of at least the past 200 minutes, results in an increase of

the breathing rate of the subjects.
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Chapter 1

Introduction

1.1 Motivation for the project

According to the World Health Organization (WHO), unhealthy environments were

responsible for a 24% of the world’s deaths in 2016 [28]. Air pollution is one of

the main contributors, accounting for 4.2 and 3.8 million deaths worldwide in 2016

caused by outdoor and indoor pollution, respectively [21, 23]. The impact on low-

middle income countries is much more pronounced, since the vast majority (98%) of

their cities have air pollution levels which exceed the WHO guidelines for the pollutant

concentrations, compared to a 56% of high-income ones [20]. As a result, around 91%

of the deaths caused by outdoor air pollution in 2016 happened in those countries [21].

More than 9 out of 10 children live in highly polluted areas, which contributed to

more than half a million deaths of children younger than 5 years old in 2016 [25].

They are usually very active, which results in a higher proportion of pollution intake

with respect to their weight than adults [22]. Additionally, their body organs are not

fully-developed, and the maturing process can be hampered by air pollutants [33].

People with asthma or chronic obstructive pulmonary diseases (COPD) also con-

stitute a risk group. In fact, in low-middle income countries, one-quarter of the deaths

from COPD are caused by indoor air pollution [23]. Numerous studies have shown a

positive association between exposure to air pollutants and respiratory issues, includ-

ing asthma exacerbations, supporting these claims [18, 37, 16, 33]. Nevertheless, there

is also previous work studying children’s respiratory health, in which a direct relation-

ship between the intake of several pollutants and the prevalence of asthma or other

respiratory problems has not been detected [12, 19].

Therefore, there is a necessity to establish the relationship between the exposure to
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Chapter 1. Introduction 2

air pollution and the response of people with chronic respiratory conditions, especially

of children or adolescents in low-middle income countries, who are the most affected

population group. This would enable a better understanding of whether the pollutant

concentration levels have a causal effect on the respiratory condition of the subjects,

and if so, to predict what will be the impact of different pollution levels, in order to

take preventative measures.

1.2 Project objectives

This project has two main objectives. The principal one is to determine whether there

is a causal relationship, over different time lags, between the exposure of adolescent

patients with asthma to three airborne pollutants: particulate matter with an aerody-

namic diameter smaller than 2.5 µm (PM2.5), nitrogen dioxide (NO2) and ozone (O3),

and their respiratory rate. The secondary one is to establish how the respiratory rate

changes with the concentrations of these pollutants: whether it increases when each of

the pollutant levels increase.

This research is based on the data collected in Delhi, India by the Delhi Air Pollu-

tion: Health and Effects (DAPHNE) project [1], which gathers pollution data and its

impact on asthmatic adolescents and on pregnant women. For this project, only the

asthmatic adolescents data has been used, consisting of 127 subjects. Each one has

between 1 and 3 trials registered in the DAPHNE dataset, which consist of time-series

data collected from subjects for a period of up to 48 hours. The AIRSpeck-P [2] and

RESpeck [3] wearable devices were used to monitor the personal exposure to partic-

ulate matter of different sizes (PM1, PM2.5 and PM10) and the respiratory rate of the

subjects, respectively. In addition to PM values, data for O3 and NO2 concentrations

can be obtained from the AIRSpeck-S stationary monitors [2] in the subjects’ schools

and homes. These sensors have been developed at the University of Edinburgh.

PM2.5, NO2 and O3 are three of the four pollutants for which the World Health

Organization has defined guideline values [24] due to their health risks. The fourth one

is sulphur dioxide (SO2), which cannot be included because this data is not collected by

the DAPHNE project. The effect on the subjects’ breathing rate in the short term (up

to a time lag of 8 hours from the exposure) has been evaluated for all three pollutants.

Since NO2 and O3 data is not collected by the personal AIRSpeck device, the distance

of the subjects to the static sensors at each timestamp has been taken into account so

that only relevant data (< 1 km away) is included.
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1.3 Novelty

This is the first research to study the short-term exposure-response relationship be-

tween PM2.5, NO2 and O3, and the breathing rate at an individual level for asthmatic

subjects. It has been evaluated for different time lags between the exposure and the

response, from 1 minute up to 8 hours with one minute resolution for the first hour

and every 10 minutes from then on. Unlike previous studies on the health effects of

air pollution which use pollution data kilometres away from the subjects [36], per-

sonal exposure data has been used in the case of PM2.5 and nearby data (< 1 km away

from the subject) for NO2 and O3. Furthermore, a recently-published causal discovery

method has been used to detect both linear and nonlinear relationships between the

concentration of these pollutants and the respiratory rate.

1.4 Results achieved

A state-of-the-art causal discovery method has been implemented to establish causal

relationship between concentration levels of PM2.5, NO2 and O3, and the respiratory

rate of asthmatic adolescents. The causal effects were present in 20% of the time in-

tervals tested for up to 8 hours from exposure. Additionally, the exposure-response

relationship has been studied for the three pollutants. For each of them, the respiratory

rate increases in the majority of the causal links found, when the pollutant concentra-

tion is higher than the average for at least the previous 200 minutes.

1.5 Document structure

The dissertation document consists of 8 chapters. Chapter 2 contains the background

of the project. The exploratory data analysis and the pre-processing of the pollutant and

respiratory rate data is done in Chapters 3 and 4, respectively. In Chapter 5, several ma-

chine learning methods are used to demonstrate an association between the pollutants

and the respiratory rate. The PCMCI causal discovery method is explained and used

in Chapter 6 to determine the causal relationships. Chapter 7 analyses the exposure-

response relationship between the pollutant concentration values and the breathing rate

for those time lags in which a causal relationship has been found by the causal discov-

ery method. Finally, Chapter 8 contains the conclusions of the project, summarising

the achievements and suggesting future work to expand the research.



Chapter 2

Background

Air pollution is a matter of great concern, so there is a vast amount of research to

study its impact on human health. Asthma exacerbations have been associated with the

exposure to air pollution, which has been suggested to be caused by an inflammation

of the respiratory airways produced by the pollutants, especially in countries with high

concentration levels like India [10, 7]. However, the specific mechanisms are still

unknown, as well as its short-term impact on the condition of asthmatic subjects, which

was identified as a research gap [10], but has been filled in this project.

Asthmatic patients make use of rescue inhalers to help relieve the symptoms of

asthma attacks [26]. Therefore, their usage is a good indicator of asthma exacerbations.

A recent study analysed the short-term impact of particulate matter with a smaller

diameter than 2.5 µm and the use of rescue inhalers in the United States [36]. The

pollution data was assigned to the event from an air-quality control station from the

same state. The result was an increase of less than 1% in the medication usage for a

12% increase in the PM2.5 concentration. However, the fact that the station was within

the same state does not guarantee to be near the monitored subject, with an average

distance from the subject of 16 kilometres. Therefore, the pollutant concentration data

recorded may not be similar to what the personal exposure of the subject actually was.

The same problem was identified recently in [34], where they demonstrated that the

sparsely located air-quality control stations are not sufficient to identify all the pollutant

concentration peaks. By installing community sensors in a region of California, United

States, they were able to identify twice the number of air pollution episodes than with

the government ones. This issue has been addressed in this project by directly using

personal exposure data for PM2.5 with a wearable device, and data from stations not

more than 1km away from the subjects for NO2 and O3.
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Asthma and other respiratory problems can lead to clinical visits or even hospital

admissions. The association between air pollution and these events has been analysed

by two different studies released in 2020. The first one evaluates the effect of different

meteorological factors like temperature, humidity or air pressure, as well as particulate

matter, NO2, O3 and SO2 on clinical visits of children due to respiratory problems in

Shanghai, China [14]. They performed a correlation analysis combined with a Poisson

regression model to determine what the influence of an inter-quartile range increase of

each pollutant concentration and meteorological factor was on the number of clinical

visits of children because of respiratory conditions. The results indicated a positive

association between both the meteorological factors and the pollutants with the number

of children clinical visits. The meteorological factors had a stronger association, but

high levels of NO2 were also considered a risk factor [14]. Taking this into account, the

meteorological factors measured by the AIRSpeck devices (temperature and humidity)

have also been included in the analysis of this project. The study also claims to have

used an extensive network of air-quality monitoring stations, but does not mention the

average distance to the subjects.

The second study analyses the impact of NOx, NO2 and PM2.5 on both visits to

the hospital and hospital admissions due to bronchitis or asthma, not limiting it to

children, in Silesian Voivodeship, Poland [15]. The method used is very similar, using

once again a Poisson regression model to determine what is the effect of inter-quartile

increases of the pollutant concentrations on the hospital visits and admissions. This

method, although it can show the strength of the associations, it does not establish

whether there is a causal relationship between them. In this project, a novel causal

discovery method has been used to cover this gap. The method yielded a significant

association between both NOx and NO2 and the hospital visits and admissions due to

bronchitis and asthma, being the PM2.5 association weaker, and only for long term

exposures [15].

The exposure to several pollutants can also lead to an increase in the mortality risk.

Beelen et al. studied the long-term effects of black smoke, NO2, SO2 and PM2.5, which

are traffic-related pollutants, on different types of mortality, including respiratory one

[4]. The association with respiratory mortality was only significant for the black smoke

and NO2. These results agree with the previous ones in that NO2 has a stronger asso-

ciation with respiratory problems than other pollutants such as PM2.5, which will be

assessed in this project with a stronger notion: causality.

The number of clinical visits, hospital admissions and on top of them, the mortality,
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are due to strong alterations in the condition of the patients. In this project, a novel

approach has been used, consisting of the analysis of the impact on the breathing rate

of the subjects. This allows to capture more precisely how their condition changes

with different exposures, without reaching situations where hospitalisation is needed,

as there are different degrees of discomfort that the subject can suffer before that point.

A previous project [17] investigated the relationship between PM2.5 and the respi-

ratory rate of the DAPHNE asthmatic subjects using a selection of statistical methods

and the causal discovery method adopted in this project. A causal relationship was

established but due to lack of time it was not investigated in greater depth; the time

lags were limited to the first 60 minutes at intervals of 1 minute for linear relationships

between PM2.5 exposure and the respiratory rate, and only for the 1, 5, 10, 15, 30, 45

and 60 minutes time lags for non-linear ones. This project has extended the previous

study in several ways:

• The tested time lags have been extended for up to 20 hours with a 1 minute

resolution for linear relationships, and up to 8 hours with a 1 minute resolution

in the first hour and every 10 minutes from then on for non-linear ones.

• The causality relationship has been extended to include the effect of the NO2 and

O3 pollutants. To do so, new data set was created with the AIRSpeck stationary

sensor data to include concentrations of NO2 and O3 when the subjects are within

1 km from the sensors.

• The causality relationship between PM2.5, measured using the stationary AIR-

Speck for distances up to 1 km from subject, and their respiratory has been es-

tablished, comparing it to the personal exposure PM2.5 results.

• Detailed analysis has been conducted on the relative importance of personal

PM2.5, stationary PM2.5, nitrogen dioxide and ozone concentrations on changes

in respiratory rate



Chapter 3

Exploratory data analysis

The exploratory data analysis (EDA) is a common first step in data analysis tasks to

understand the distribution and characteristics of the data, so that wrong interpretations

of the results are avoided [11]. In this project, there are two different types of data:

the one collected by the RESpeck wearable device, containing the respiratory rate

data, and the one from the AIRSpeck devices, which consists of the meteorological

data (temperature and humidity) and PM2.5 personal exposure data from the wearable

device, and the NO2 and O3 data gathered by the static one. There is data for 127

asthmatic subject. All of them are time series, which means that they consist of a

series of data points collected through time [5].

The static data was only considered when the closest sensor (school or home sen-

sors) was at most 1 km away from the subject at each timestamp. This resulted on an

average distance of the subjects to the static sensors for which data was considered of

approximately 156 metres. When the school sensor was the closest one, but had no

data for that minute, the community sensor data was used instead (if available), since

both school and community static sensors are located outdoor, while the home sensor

is indoor. Several comparisons were made between the school and community sensors

to see whether this decision was reasonable. They both yielded similar values, having

exactly the same data for some trials because the community sensor was sometimes

used as the school one. The results of these comparison are included in Appendix A.3.

Location, scale, shape and correlation measures have been taken from the available

data. Location measures allow to know where the data is positioned (around what

values), scale measures determine how dispersed the data is, shape measures evaluate

how symmetric the distribution is and what its tails look like, and finally correlation

ones uncover linear relationships between the different variables.

7
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Each of these categories contain robust and non-robust measures. The values of

non-robust measures like the mean are very affected when an outlier is included in

the data, unlike robust measures which maintain similar values. This allows to detect

whether there are extreme values that need to be eliminated later. The tables with the

exact numeric results of the descriptive statistics have been included in Appendix A,

and the results have been interpreted here.

3.1 RESpeck data

The data from the RESpeck device for each trial of each subject contains the following

information:

Feature Description

Timestamp The date and time of the measurement, with 1 min. resolution.

Breathing rate The average respiratory rate of the subject in the minute,

measured in beats per minute (bpm).

Breathing rate std Standard deviation of the respiratory rate per minute

Activity level Intensity of the subject’s activity (floating point number).

Activity type The category of the activity the subject is carrying out.

Step count The number of steps of the subject in the minute.

Table 3.1: Data collected by the RESpeck device.

The first thing noticed in the analysis is that 37% of the respiratory rate data is

missing (143741 missing values out of 388050). This is partly because the data has

been filtered so that if the activity type denotes that the subject was lying on the stom-

ach, the recorded respiratory rate is set as missing data because it cannot be trusted.

The same happens when the sensor is not being worn by the subject, which is detected

when the activity level is below a threshold (0.013).

The location measures for the breathing rate are shown in Table A.1. The breathing

rate data is located around 20 bpm. The mean (non-robust measure), the median and

the mode (both robust measures) are very similar, and the maximum and minimum

measurements are in reasonable ranges taking into account the first and third quartile

values. This indicates that there may not be outliers in the respiratory rate data, or at

least not with extremely high or low values. However, the data is being analysed to-
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gether for all the trials and not individually, so there might still be some values outside

the norm for some trials.

The relatively low standard deviation shown in Table A.2 (4.4) compared to the

mean (21.4), indicates that the values tend to be concentrated around the mean. How-

ever, the significant difference between the IQR and the range (≈ 30 bpm) may in-

dicate elongated tails in the distribution. The usage of different sensors across trials

contributes to a greater variability in the data, as well as different forced vital capac-

ities of the subjects [9]. Figure 3.1 illustrates the differences in the distribution of 5

randomly chosen trials of different subjects. It is done with a violin plot, in which the

white point in the centre indicates the mean and the wide black bar line indicates the

inter-quartile range, with the top of the bar being the third quartile and the bottom the

first one. Finally, it contains the kernel density plot showing the distribution of the data

at each side of the central vertical axis (it is symmetric).

DAP056(1) DAP071(1) DAP081(1) DAP095(1) DAP116(1)
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Figure 3.1: Respiratory rate violin plots for

5 random trials.
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Figure 3.2: Respiratory rate distribution

per activity type.

The shape measures of Table A.3 suggest a longer right tail in the probability dis-

tribution of the breathing rate (due to the positive skewness values), so that abnormal

breathing rate values are usually greater than the mean, which is reasonable for asth-

matic subjects whose respiratory rate can have unusual increases at certain points due

to exacerbations. However the fact that the kurtosis value is lower than the one of a

normal distribution (which is 3), indicates that there are no heavy tails (extremely low

or high values) in the distribution.

Finally, the linear correlation between the respiratory rate and the activity level

of the subjects have been computed with the Pearson’s correlation coefficient and

Kendall’s tau. The former is not robust, since it divides the covariance of the two

variables by the product of their standard deviations, and those measures are greatly
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affected by outliers. The latter is robust since it only takes into account concordant

and discordant pairs of data. A pair of data points (xi,yi) and (x j,y j) is concordant if

when xi > x j, yi > y j and when xi < x j, yi < y j. They are discordant when the oppo-

site happens. Then, the number of discordant pairs is subtracted from the number of

concordant ones and divided by the total number of pairs. Its value goes from -1 (neg-

ative linear relationship) to 1 (positive linear relationship) like Pearson’s correlation

coefficient.

The correlation measures have been computed for different time lags between the

detected activity level and the respiratory rate. The results are shown in Table A.4,

where a positive linear correlation is found for all lags, but it is not very strong (in the

0.2-0.3 range). The difference in the distribution of the breathing rate with different

activity types is shown in Figure 3.2. Activity type 8 corresponds to subjects lying

on the stomach, for which the data has been removed, so it is not included in the

graph. Figure 3.3 shows the respiratory rate captured for the subject DAP001 in the

second trial (DAP001(2)), which also shows the influence of the activity level during

the night, as it drops down while sleeping. The impact of the activity type and level on

the subjects’ breathing rate has been removed in Section 4.4.

11:30:00 17:30:00 23:30:00 05:30:00 11:30:00 17:30:00 23:30:00 05:30:00 11:30:00
Time in India (GMT+5:30)

15

20
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Re
sp
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ry
 ra

te
 (b

pm
) Respiratory rate

Figure 3.3: Respiratory rate data for trial DAP001(2).

3.2 AIRSpeck data

The AIRSpeck data can be divided in two: the one from the wearable sensors (PM2.5,

temperature and humidity), and the one from the static stations (which also includes

NO2 and O3). The statistics of all of them will be analysed together in this section.

The static monitors register data every 5 minutes, as opposed to the 1 minute res-

olution of the wearable ones. Therefore, when resampling data to 1 minute, NO2 and
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O3 have both a 63% of missing data, with respect to a 2% of personal exposure PM2.5.

The temperature does not have missing values and the humidity only a 0.2%.

The location measures for the AIRSpeck data are displayed in Table A.5. The

mean PM2.5 of the collected in Delhi is twice the median. There is also a significant

difference between the mean and the median in the O3 case (8750 vs 6859). This,

together with the extreme maximum values found in the three pollutants (e.g. 65535

µg/m3 for NO2) and the temperature (with also an extreme minimum value), denotes

the presence of outliers in the dataset, most likely due to measurement errors. All of

them have either minimum or mode values of 0, which is due to the sensors having it

as default value, so they have been filtered out in the pre-processing.

The mean and median values for the pollutants are much greater than the recom-

mended 24-hour mean values set by the WHO in 25 µg/m3 [24]. Their MAD and IQR

(robust measures) shown in Table A.6 are also sizeable considering those guidelines.

This might indicate that the personal exposure of the subjects to the pollutants in Delhi

captured by the DAPHNE project is out of the reasonable range, but the data still needs

to be calibrated, which have been done in Section 4.1, so conclusions cannot be drawn

from the raw sensor data. Finally, the robust shape measures in Table A.7 indicate

that there are no heavy tails in the distribution (extreme values) once the outliers are

removed (the robust kurtosis is low, around 1.5), and that the data is mostly centred

around the mean, with PM2.5 having a longer tail of the distribution towards higher

values than the mean (as it has a positive value for robust skewness) .

Since significant outliers have been detected in this EDA, only robust measures are

reliable. Therefore, the correlation between the different AIRSpeck variables and the

respiratory rate of the subjects have been computed with Kendall’s tau. The results

are displayed in Table A.8, showing very little correlation between them for the 5

time lags tested (all of them close to 0). However, Kendall’s tau only tests for linear

relationships, and the association between the variables may be non linear. In fact,

the p-values for the statistic test are lower than 0.05 for all the features except NO2,

which means that the null hypothesis that says that there is no association between the

variables can be rejected.



Chapter 4

Data pre-processing

The exploratory data analysis helped to determine the pre-processing steps that need

to be carried out before any data analysis task is performed.

4.1 Calibration

The pollutant data has been gathered by different personal and static AIRSpeck sen-

sors. The differences between those sensors is a potential issue, since a sensor can

yield higher values than other one for the same air pollutant concentration. Therefore,

in order to make their data comparable, they need to be calibrated. The calibration

factors for PM2.5 concentration data were already given by the Centre for Speckled

Computing at the University of Edinburgh, since they were used for previous projects.

However, static NO2 and O3 data had not been calibrated before.

The way the sensors are calibrated is by placing them near a reference Air Quality

Monitoring Station for a period of at least 2 weeks, and comparing the collected data

with the reference one to obtain the calibration factors that make the sensor data as

similar as possible to the reference one. The calibration factors have been computed

with a ridge regression model, explained in Chapter 5, which has been fitted with the

data of the sensor to be calibrated, to predict the reference sensor data. In this way, the

coefficients of the linear regression are obtained for calibrating the raw sensor data.

All the experiments were done for two different periods of time, since between Oc-

tober and November 2019 the sensors were put 1 km away from the reference sensor,

and between January and April 2020 they were put right next to it. Three possibilities

were considered for the set of features to train the machine learning model. The first

one was to use the working and auxiliary electrodes for both NO2 and O3 (4 features).

12
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The working electrode is the one responsible for the measurements, while the auxil-

iary one is meant to account for drift as a reference. The second one was to add the

temperature and humidity values to the electrodes (6 features), and the last one to also

include the PM2.5 data (7 features).

Fitting the ridge regression model with all the available data could lead to over-

fitting, meaning that the model could adapt to the noise of the data, and have a bad

performance on unseen data, although the performance on the training data is good.

Since the objective is to have a good performance on new (unseen by the model) sensor

data, two different calibrations have been performed for each pollutant. The first one

fits the model with all the available data, and the second one performs cross-validation,

splitting the data in 5, training the model 5 times (each one using a different split as test

data and the rest as training data), and then averaging the performance of the 5 models

on unseen data. Overfitting can be detected if the performance using all the data is

much better than the one using cross-validation. Additionally, two different evaluation

measures have been used: root mean squared error (RMSE) and mean absolute error

(MAE). Only the latter is robust in the presence of outliers.

Figures 4.1 and 4.2 show for NO2 and O3 respectively, the MAE of the calibration

with the three set of features, for the period of time between January and April 2020.

The error when fitting the model with all the data is plotted in blue and, after cross-

validation (CV), in orange. The trend is decreasing for both of them as the number of

features used in the model increases.
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Figure 4.1: MAE of NO2 calibration.

4 6 7

Number of features
0

1

2

3

4

5

6

7

8

M
ea

n 
M

AE MAE all
MAE CV

Figure 4.2: MAE of O3 calibration.

Additionally, the relative increases of the cross-validation error (using unseen data

to test the model) with respect to the fit-to-all error have been plotted for both pollutants

in Figures 4.3 and 4.4. When looking at the MAE, the relative error increase goes up

significantly with the number of features. The RMSE, however, has a peak when using

only the electrode data (4 features). This is due to an error in the measurements of one
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specific sensor, which makes RMSE go up as it is heavily influenced by outliers. This

should not be taken into account, as before uploading it, the calibration of each sensor

is evaluated manually to decide whether to include it or not (in case it has an error

like this one). The significant difference in the cross-validation error with respect to

the fit-to-all one when increasing the number of features is a sign of overfitting. Since

the objective is to apply the calibration factors to new data, the model with only the

electrode features (4 attributes) was selected for the calibration.
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Figure 4.3: Mean percentage error in-

crease from fit-to-all to CV for NO2.
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Figure 4.4: Mean percentage error in-

crease from fit-to-all to CV for O3.

Exactly the same trend happened in the period of time from October to November

2019, but the error values were higher, which is reasonable since the reference sensor

was further away in this period. Therefore, the January-April period was selected

for computing the calibration factors. The complete results, including the October-

November period, the RMSE metrics and the sensor calibration leading to the RMSE

increase in Figures 4.3 and 4.4 are included in Appendix B. Figure 4.5 shows the NO2

data of a sensor before and after calibrating it with respect to the reference sensor.

4.2 Outlier removal

During the exploratory data analysis, outliers have been detected for most of the vari-

ables thanks to the use of robust and non-robust measures. These extreme values need

to be removed before feeding the data to a statistical model, since they may affect

its performance and could lead to wrong interpretations of the results. Two strategies

have been tried out: Tukey’s fences and winsorizing. The former considers as out-

liers the data points out of the [Q1− k · IQR,Q3 + k · IQR] interval, where k is usually

1.5, Q1 and Q3 are the first and third quartiles, and IQR is the inter-quartile range

[38]. However, this technique, when applied individually to each subject, removed too
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Figure 4.5: Sensor NO2 data before and after calibrating to the reference one.

much data, including reasonable (although high) values that could give insights in the

subsequent analysis. Therefore, winsorizing was used, which consists of removing the

values above a certain quantile and below another one. A trade-off is required between

the amount of non-outlier data that might be eliminated and the extreme values that

need to be removed, so the 5th and 95th percentiles were selected as the boundaries

beyond which data points are considered outliers, and therefore removed.

4.3 Missing data imputation

As reported in Chapter 3, the PM2.5 data has a 2% of missing values, which is increased

to 37% for the respiratory rate and 63% for NO2 and O3. Some statistical models, like

the causal discovery method that has been used in this project, do not admit missing

values, so they need to be imputed in the first place. An interpolation strategy has

been selected to impute reasonable values, estimating the missing data points based on

the present ones. However, with large gaps, the interpolation might turn unrealistic.

Therefore, the maximum gap size over which to interpolate needs to be set.

Algorithm 1 was originally defined in [17], and has been reused in this project to

determine the maximum gap for each variable, testing values from 5 to 60 minutes in

5 minutes steps. The set of trials used to test each variable have been selected as a

trade-off between the amount of trials used (to be as high as possible) and the maxi-

mum percentage of missing data (to be as low as possible). Therefore, the thresholds
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on the maximum percentage of missing data were 10%, 25%, 80% and 80% for PM2.5,

breathing rate, NO2 and O3, respectively. The maximum allowed mean absolute per-

centage error introduced due to the interpolation has been set to 15%, resulting in a

maximum interpolation gap of 15 minutes for the respiratory rate, PM2.5 and NO2, and

25 minutes for O3. After the standardising procedure explained in the next section,

the remaining missing data has been imputed with the mean, to influence as little as

possible the subsequent statistical models that make use of the data.

Algorithm 1 Maximum interpolation gap calculation [17]
Input: The maximum gap to test: max gap

Let ‘MAPE’ be the Mean Absolute Percentage Error

num trials = number of trials with enough data for the experiment

for all trials with enough data for the experiment do
Randomly select 1000/num trials timestamps of the time series

for all selected timestamps do
Remove max gap consecutive minutes beginning with the current timestamp

Interpolate the gap

Add the MAPE between the true and interpolated data to a counter

end for
Compute the MAPE average for the trial and add it to a total MAPE counter

end for
return total MAPE/num trials

4.4 Normalisation

Normalisation (or standardisation) is a common procedure in data analysis to make

data in different scales comparable. For example, when using two different attributes

to fit a linear regression model, the contribution of each of them can only be compared

with the resulting linear coefficients if they are on the same scale. In Section 3.1, the

distribution of the respiratory rate of the subjects was shown to change with the type of

activity they were carrying out, and it was positively correlated with the activity level.

This influence can also be removed through standardisation, by subtracting the trend it

produces throughout the day, so that the breathing rate no longer depends on it.

The main strategies for data normalisation are min-max and z-score normalisation

[8]. The former consists of scaling the data into a specified interval with a minimum
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and maximum value, which is usually [0,1]. However, this approach requires the dif-

ferent variables to have a specified minimum and maximum value, which is not the

case. Therefore, the z-score strategy has been selected, which consists of scaling the

data to a zero mean and a standard deviation of 1 by subtracting the mean to each data

point and dividing the result by the standard deviation.

The mean of a time series can be thought of as the trend that the data follows

through time. If the trend is subtracted, then the time series would be centered around

zero. The Locally Weighted Scatterplot Smoothing method (LOWESS) was introduced

in [6] and can estimate the trend value at a given point by first selecting the K nearest

data points and then performing a linear regression weighted with the distance of each

of the selected values to the target. The number of data points has been set to 30,

so that the data 15 minutes before and after is used to estimate the trend. Figure 4.6

shows the trend computed using LOWESS for the DAP001(2) trial shown previously

on Figure 3.3. The computed trend is subtracted from the data to remove the mean.

Finally, the standard deviation of each time series is computed with a moving window

of 30 minutes over the time series, and the result of subtracting the mean is divided by

it. The standardised data for trial DAP001(2) is displayed in Figure 4.7.
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Figure 4.6: Respiratory rate trend for trial DAP001(2).
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Figure 4.7: Respiratory rate standardised data for trial DAP001(2).



Chapter 5

Machine learning experiments

Before assessing the causality in the relationship between the pollutants and the respi-

ratory rate, several preliminary experiments have been performed to demonstrate that

an association between them exists. A variety of machine learning methods have been

used for this task, since they are capable of capturing the relationship between differ-

ent attributes and a target variable, and use it to predict the selected variable with any

choice of values for the attributes. A regression task has been performed, in which the

current breathing rate of a subject needs to be predicted using past respiratory rate and

pollutant concentration values. The way to determine an association is to first compute

the prediction error when only using past values of the breathing rate, and compare it

to the error achieved when adding the data of a pollutant. If the error produced is lower

in the latter case, it means that the pollutant concentration values encode information

about how the breathing rate of the subject behaves. The evaluation measure used has

been the mean absolute error (MAE), which is robust to outliers.

Both linear and non-linear machine learning methods have been selected to be

able to capture any type of relationships between the variables. Two different linear

methods have been tried out: ridge and Huber regression. Both aim to fit a line, plane

or hyperplane to the available data (depending on the dimensionality of the data) and

use it to predict the target variable at different attribute values, but they differ on the

optimisation method used. Ridge regression minimises the mean squared error (MSE),

while Huber regression does it with Huber loss. The latter uses the mean absolute

error except for values close to zero (where MSE is used), so it is much more robust

to outliers (since the error is not squared). Every machine learning method has several

hyper-parameters that can be adjusted for a better prediction. In this case, the hyper-

parameter adjusted for both was the L2 regularisation strength, which needs to be set

18
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in a way that avoids overfitting but that makes a good fit of the data. 21 different

regularisation values have been tested in a logarithmic scale from 10-5 to 105 (with

higher values there is less overfitting but a worse fit of the data).

Non-linear machine learning models are able to find patterns beyond linear rela-

tionships. Random forest has been the first non-linear model to be tried out, consisting

on a group of decision trees, each one built with a random subset of the data, whose

result is the average output of all the trees. The hyper-parameter tuned for this model

was the maximum depth of the decision trees, which can control overfitting, testing

from 2 to 210 (using powers of two), as well as no restriction in the depth. K-nearest

neighbours is the second non linear model, which yields the average target value of the

K closest training data points to the evaluated one. In this case, the hyper-parameters

were the number of neighbours (from 1 to 210 in powers of 2), and whether the neigh-

bour target values are all taken equally into account or if they are weighted taking into

account the distance to the evaluated data point. Finally, support vector regression has

been used, which is capable to uncover many types of non-linear relationships with the

use of non-linear kernels to transform the data. The type of kernel used has been tuned

to account for different types of relationships, including linear, polynomial of 2nd, 3rd

and 4th order, radial basis function and sigmoid transformations. These methods have

been implemented with the scikit-learn Python package [27].

The way supervised machine learning is carried out with time series is to first apply

a time lag to the attributes and use them to predict the current target variable value. In

the case of predicting the breathing rate with its past values, if a time lag of 10 minutes

is considered, several tuples will be made in which the second element is the breathing

rate at a given timestamp (the target variable), and the first value is the respiratory rate

10 minutes before that timestamp (feature used for the prediction). All the time lags

from 1 to 60 minutes have been tested for all the attributes in these experiments. For

the hyper-parameter selection of the models, a cross-validation (CV) procedure has

been followed, dividing the data into 5 folds as explained in Section 4.1 for the sensor

calibrations. Since only pairs of data points are considered, covering all the gaps in

the time series is not essential, so only the interpolation of missing data has been used

without imputing the rest with the mean, as doing so could lead to artificial results.

The first step is to compute the prediction error of each model when using only

the past breathing rate data. For each of the models, the cross-validation has been

carried out for every time lag of the breathing rate in the first hour, and once the best

parameters are selected, the models have been evaluated with a test set to assess their
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performance on unseen data. The top 5 respiratory rate time lags with the lowest MAE

were stored for each machine learning method for the subsequent experiments.

The process was then repeated, but using two attributes for the prediction: the past

breathing rate and the past pollutant concentration. Algorithm 2 shows the machine

learning pseudo-code used for each model and each of the 3 pollutants, in which the

60 time lags are tested for the pollutant, for each of the top 5 breathing rate time lags.

Finally, the prediction error when only using the breathing rate at the 5 different time

lags and when adding each of the pollutants, have been compared to determine whether

they encode information about the respiratory rate behaviour.

Algorithm 2 Machine learning procedure with respiratory rate and pollutant data
Input: The pollutant to be tested and the machine learning model

for all trials do
Get trial pre-processed data

for all top 5 respiratory rate time lags do
for all pollutant time lags from 1 to 60 minutes do

Set the lagged breathing rate and pollutant data (using their respective lags)

as input features and the original respiratory rate data as the expected output

Split the data randomly into training set (80%) and test set (20%)

for all hyper-parameters do
Initialise the machine learning model with the hyper-parameters

Split the training data in 5 folds

Compute the CV error by averaging the errors produced when using each

fold as validation set (and the rest as training set for the model)

If the CV error is the lowest found so far, save the hyper-parameters used

end for
Initialise the model with the best set of hyper-parameters found

Fit the model with the whole training data and compute the error (MAE)

when predicting the test data

Save the MAE for the current trial and combination of time lags

end for
end for

end for

The PM2.5 personal exposure data was the first pollutant for which the association

was tested. The five machine learning models yielded similar results. Figures 5.1 and
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5.2 show the average MAE of all the trials, for the best performing linear and non-

linear models (Huber regression and random forest), respectively. The full results have

been included in Appendix C.1. The errors at the best respiratory rate time lag (1

minute) are very similar with and without the pollutant information, being almost the

same for the linear model. The distance between them is increased with the subsequent

time lags, but it is still small, showing that personal PM2.5 for the tested trials encodes

information about the breathing rate, although it does not add much value to only using

the respiratory rate for the prediction.
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Figure 5.1: Huber regression average er-

ror comparison personal PM2.5.
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Figure 5.2: Random forest average error

comparison personal PM2.5.

Subsequently, the NO2 and O3 relationship with the breathing rate was evaluated.

Huber and random forest regression were also the models that achieved the lowest av-

erage MAE for both pollutants. They obtained a significantly lower error when the

pollutant information is included, of around 0.38, compared to the PM2.5 personal ex-

posure data, which achieved MAE values around 0.49 (very similar to only using the

respiratory rate). Taking into account that the data has been standardised to approx-

imately 0 mean and a standard deviation of 1, including the NO2 or O3 information

results in a drop in the prediction error of approximately a 10% with respect to the stan-

dard deviation, and around a 22% reduction with respect to the MAE produced when

only using past breathing rate values. This suggests a strong relationship between these

gases and the respiratory rate of the tested subjects, as they contain information of its

behaviour which is captured by the machine learning models for the prediction.

Nevertheless, the set of subjects used for personal PM2.5 exposure and for NO2 and

O3 is not the same. The reason for this is that only the static sensors for which a reason-

able calibration was performed with respect to the reference sensor was included (they

were revised individually). Therefore, to do a fair comparison, the personal PM2.5 re-

sults have been plotted for the same subset of trials as the gases. The result for the best
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two models are shown in Figures 5.3 and 5.4, and the rest are included in Appendix

C.2. The average prediction errors are very similar for the three pollutants, and reduces

significantly (≈ 22%) with respect to only using the respiratory rate. Nevertheless, this

does not mean that they have exactly the same effect on the breathing rate, but that they

encode a similar amount of information to predict it.
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Figure 5.3: Huber regression average er-

ror comparison all pollutants.
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Figure 5.4: Random forest average error

comparison all pollutants.

One further experiment was made to demonstrate the association, by evaluating

the performance of the best two machine learning models (Huber and random forest

regression) when only using the pollutant information, without the breathing rate, and

comparing it to using only past breathing rate values. The results are shown in Figures

5.5 and 5.6, in which the three pollutants achieve a lower MAE than when using the

respiratory rate. This is a sign of the strength of the association, since they contain

more information about the breathing rate behaviour than the respiratory rate itself.
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Figure 5.5: Huber regression average er-

ror comparison pollutants alone.
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Figure 5.6: Random forest average error

comparison pollutants alone.

In the last two experiments, the three pollutants had a very similar prediction per-

formance, even though the NO2 and O3 data come from static sensors further away



Chapter 5. Machine learning experiments 23

from the subject than the PM2.5 data. Therefore, a new experiment was devised to de-

termine whether using personal exposure data had any actual benefit for the prediction,

by fitting the models with both personal and static PM2.5 data. The latter was obtained

from the same static sensors as NO2 and O3, which also measure particulate matter. It

was pre-processed the same way as the other pollutants, and its calibration was already

given (as for personal PM2.5) from previous projects. Once again, the results were

very similar, with the static data actually giving a slightly better performance for both

models, as seen in Figures 5.7 and 5.8. This has been explored further in Section 6.3

with a causal discovery method, to see whether the usage of wearable sensors really

has an advantage, or if having nearby static ones as in [34] is sufficient.
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Figure 5.7: Huber regression average er-

ror personal vs static PM2.5
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Figure 5.8: Random forest average error

personal vs static PM2.5.

When the different attributes are standardised to the same scale, the linear regres-

sion coefficients can tell which input feature affects the most the value of the predicted

variable. This does not determine which variable contains more information about the

target one (which was determined with the previous experiments), but rather which

one makes the target value increase or decrease the most when its value is increased

by one unit. Therefore, a final experiment was devised by fitting the Huber regression

model with past breathing rate and the data from the three pollutants, using the best

time lags found for each of them in the experiment shown in Figure 5.5. The result

was that the increase of the past breathing rate (one minute ago) by one unit is the

one that increases more the predicted value with a positive linear relationship, which

is reasonable since the breathing rate one minute ago will be similar to the current one.

It was followed by NO2 and O3 with a negative linear relationship, and PM2.5 with a

positive one. This, however, only takes into account a specific time lag in the first hour,

so the exposure-response relationship has been further analysed in Chapter 7.
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Causal discovery method

In the previous chapter, an association has been demonstrated between the three pol-

lutant concentrations and the respiratory rate. In this chapter, a method called PCMCI

has been used to determine whether this relationship is causal, and at which time lags.

PCMCI was introduced in [32] as a causal discovery method than can relate several

large-scale time series and detect at which time lags there is a causal relationship with

a previously selected target variable.

The method has several assumptions, detailed in [30]. The first one is the causal

sufficiency, which assumes that all the elements that can be causes of at least two

of the included variables take part in the analysis. To account for this, in addition

to the pollutants and the past breathing rate, the temperature and the humidity have

been included, as an association between meteorological factors and the condition of

asthmatic subjects has already been demonstrated [14]. The causal Markov condition

and faithfulness assumptions complement each other. The former means that if no

causal link is found between a time lag of a variable and the target time series, then they

are conditionally independent. The latter complements it stating that if two variables

are conditionally independent, then the method will not find a causal link.

PCMCI also requires the different time series to be stationary, which means that at

different points of time, the properties of the data will remain the same. This is true

in this case, since the data has been standardised to be stationary in the mean and the

standard deviation. Finally, it also assumes that the value of a variable in a certain

point of time does not influence the value of another one at the same time.

The method can be divided in the condition-selection phase and the momentary

conditional independence one (MCI). The former is a modified version of the PC algo-

rithm introduced in [35], which aims to find a group of time-lagged variables that may

24
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be a cause for the target variable (called the parent set). It focuses on maximising the

true positives, so the result can include several false positives that need to be filtered

out in the second stage. Algorithm 3 show how the condition-selection phase operates

to obtain such set, testing for conditional independence between the variables.

Algorithm 3 Modified PC algorithm used in PCMCI [35]
Input: Time series data, target variable, significance level, maximum time lag, con-

ditional independence test

Let the data be a collection of time series Xt = (X1
t, X2

t,. . . , XN
t) and the target

variable Xj
t

Let τmax be the maximum time lag tested

Let Xj
t-τ mean the variable Xj

t shifted with a τ time lag.

Initialise parent set of Xj
t (P(X j

t)) with every variable at every time lag up to τmax.

for p = 0 to p =size of P(X j
t) do

for all variables Xi
t-τ in P(X j

t) do
if p == 0 then

Test Xi
t-τ ⊥⊥ Xj

t with the given conditional independence test

else
S = first p variables in P(X j

t)

Test Xi
t-τ ⊥⊥ Xj

t | S with the given conditional independence test

end if
If the hypothesis cannot be rejected at the given significance level, tag Xi

t-τ to

be deleted later from P(X j
t)

end for
Delete tagged variables from P(X j

t)

Sort P(X j
t) in descending order with the test statistics of each variable

end for
return P(X j

t)

The condition-selection stage can be seen as a dimensionality reduction step for

the subsequent MCI test, obtaining a reduced set of variables to test for causality with

the target one (which is a computationally expensive method). In the MCI phase, the

independence between the target variable and each of the variables contained in the

parent set returned by the PC algorithm is tested, conditioned not only on the rest

of the parents of the target variable, but also on the parents of the evaluated variable

from the provisional parent set. This is done to detect autocorrelation, and allows the
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PCMCI method to be very robust against false positives [35]. Therefore, only those

variables Xi
t-τ for which the null hypothesis Xi

t-τ ⊥⊥ Xj
t | P(X j

t) and P(X i
t-τ) can be

rejected with a given significance level, have a causal link with the target variable Xj
t.

The existence of such links means that the values of the evaluated time series at the

given τ time lag are a cause for the values of the target time series. A significance level

of 5% has been chosen for the p-values, as it is standard in the literature [35].

Both parts of PCMCI require a conditional independence test to be defined. The

Python package called Tigramite [29], which has been used for the method, supports

several tests. The partial correlation test is the fastest, but it assumes a linear relation-

ship between the variables. On the other hand, the test introduced in [31] consisting of

a k-nearest neighbour algorithm for the conditional mutual information between vari-

ables (CMIknn), makes no assumption about the type of relationship, so it can uncover

any non-linear dependency. The downside is that it is much more computationally

expensive, and that it has less power detecting linear relationships than the partial cor-

relation test [32]. The linear test has allowed to evaluate the linear relationship between

the pollutants, humidity and temperature, and the breathing rate in time lags up to 20

hours with a 1 minute resolution. With the non-linear one, only time lags every 10

minutes up to 8 hours have been tested due to the vast amount of time it takes to run,

although for the first hour every minute has been examined.

6.1 Personal PM2.5 exposure causal relationship

The first objective with PCMCI was to reproduce the results obtained in [17] for the

causal relationship between the personal PM2.5 exposure, humidity and temperature,

and the breathing rate of the subjects. Both linear and non-linear conditional indepen-

dence tests were used, in which the tested time lags were the first hour with a 1 minute

resolution for the linear approach, and the time lags of 1, 5, 10, 15, 30, 45 and 60

minutes for the non-linear one.

6.1.1 Linear PCMCI

The PCMCI results using the partial correlation test (which assumes linear relation-

ships) were completely reproduced for the first hour, and they were further expanded

up to a time lag of 20 hours, testing for every time lag with 1 minute resolution. The

previous results for the first hour changed slightly when the maximum time lag was
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expanded, since the possible variables in the parent set are increased. It is possible

that some lagged PM2.5 observations for which a link was found when only testing the

first hour, is conditionally independent from the breathing rate of the subject given the

information provided by a longer time lag, as explained in Algorithm 3.

In order to obtain meaningful results as least influenced as possible from the error

introduced when imputing missing data, only trials for which less than 40% of their

data was missing for the four time series involved in the analysis: breathing rate, per-

sonal PM2.5, temperature and humidity, were selected. Additionally, those with less

than 40 hours of data were discarded because PCMCI requires the time series data to

be at least twice as long as the maximum time lag. The reason for this is that the last

observation (at hour 20) also needs to be tested for a 20-hour time lag. As a result, 50

trials were selected for evaluation. An average of 58.82 causal links were found for

each of them, with a minimum of 30 and a maximum of 80.

The average number of links per hour is rather constant, although there are two

peaks, the first one between the 7th and 10th hours, and the second one at the end, in

the 18th hour. However, the distribution of links has a great variability depending on

the subject, which is why the analysis has been made personalised. Two examples of

this are displayed in Figures 6.1 and 6.2, where the former has a more pronounced short

term effect, and the latter a long-term one (inside the first 20 hours). The distribution

for all the trials has been included in Appendix D.1.1.
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Figure 6.1: DAP095(1) causal links distri-

bution for PM2.5 in linear PCMCI.
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Figure 6.2: DAP067(2) causal links distri-

bution for PM2.5 in linear PCMCI.

6.1.2 Non-linear PCMCI

As mentioned before, the partial correlation test assumes that the relationship between

the variables is linear, which could create spurious causal links if it is not the case.
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Therefore, the CMIknn test is more reliable in the sense that it can discover any type

of relationship. It is a much more computationally expensive method, and that is why

in [17] only 7 time lags inside the first hours could be tested. However, those results

could not be reproduced exactly, obtaining very similar values but not the same ones.

This non-linear test requires a random permutation [31], so that different executions

of the test yield slightly different results. To ensure that the outcomes of this research

can be fully replicated, the same seed (0) for the random number generator has been

set before each PCMCI execution.

The analysed time lags have been expanded up to 8 hours, but every minute could

not be tested because it would take more time than what is available for this project.

Therefore, every ten minutes from the start of the second hour to the end of the eight

hour were tested, in addition to the 7 lags in the first hour. As 8 hours were tested

instead of 20 for the linear one, more trials could be tested (55). An average of

7.76 causal links were found per trial, which is around three times the proportion of

causal links with respect to the number of tested links obtained by the linear approach

(15.84% and 4.9% respectively). The distribution of the total number of links found

for all the subjects at the different time lags is shown in Figure 6.3, where there is a

causality peak at the very short term (< 30 minutes after the exposure) and a second

one around the 7th hour, which suggest a second reaction to the pollutant.
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Figure 6.3: Non-linear PCMCI causal link distribution for PM2.5

Causal links were found for every trial except for one (DAP030(1)), as shown in

Figure 6.4, where the x-axis represents the 55 different trials. In order to check whether

that subject’s breathing rate is also influenced by the pollutant, the 480 time lags up

to the 8th hour (minute by minute) were evaluated for that trial. Five causal links

were discovered, demonstrating that there is no trial for which the exposure to PM2.5

influences its breathing rate at certain time lags. Additionally, to analyse the impact of
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the pollutant in the shortest term, the causality of every time lag (minute by minute)

in the first hour was evaluated. A quarter (25.39%) of the tested time lags for all the

trials had a causal relationship with the breathing rate of the respective subjects. Only

the trials DAP075(2) and DAP109(1) had no causal links in the first hour, but they had

in the following ones. Overall, there was a peak in the number of links in the first 20

minutes and it starts decaying as the time passes, as it can be seen in Appendix D.1.2.

0 10 20 30 40 50
Trial

0

5

10

15

20

25

30

Nu
m

be
r o

f l
in

ks

Figure 6.4: Number of links per trial for

PM2.5 with non-linear PCMCI.
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Figure 6.5: Average causal links distribu-

tion for PM2.5 with linear PCMCI.

These results strongly suggest causality between PM2.5 concentrations and the

breathing rate of the subjects, having a high proportion of causal links considering

that PCMCI has a very strong false positive control [35]. Appendix D.1.2 contains the

complete results of this experiment for each trial and time lag.

6.2 Personal PM2.5, NO2 and O3 causal relationship

In the previous section, the results achieved in [17] were reproduced and expanded,

showing a strong causality between the exposure to PM2.5 and the respiratory rate of

the subjects. However, PM2.5 is not the only pollutant that the subjects are exposed

to. The causal sufficiency assumption of PCMCI states that all the possible causes

for the breathing rate should be included in the analysis, to obtain results as accurate

as possible. Therefore, the other two pollutants for which the DAPHNE dataset has

information (NO2 and O3) have been added to the PM2.5 personal exposure data.

6.2.1 Linear PCMCI

The first experiment was done with the partial correlation test, which allows to eval-

uate up to 20 hours, although making the linear relationship assumption. This can be
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indicative of which relationship between the different pollutants and the respiratory

rate has more linear components, which the non-linear test has less power to detect.

The selected set of trials is different from the one used in Section 6.1 because more

variables are being considered and they have a higher percentage of missing data, as

explained in Section 3.2. Additionally, some of the trials do not have calibrated values

for NO2 and O3, since only those sensors with a good fit to the reference sensor when

calibrating were selected. Therefore, only the trials with less than a 60% of missing

data across all the variables (including the temperature and humidity) with at least 40

hours of data (as explained in the previous section) were considered (30 trials).

The distribution of the average number of causal links per trial between PM2.5,

NO2 and O3, and the breathing rate (all for the same set of 30 trials) are displayed in

Figures 6.5, 6.6 and 6.7, respectively. The causality of the linear relationship between

PM2.5 and the respiratory rate seems to be stronger in the first hours after the exposure,

in contrast to the one of the ozone, which is more pronounced in the last hours from the

tested interval. The distribution of the NO2 does not seem to follow a specific trend,

having several spikes throughout the time interval. The distributions vary significantly

with the evaluated subject, so the personalised analysis for each trial and pollutant has

been included in Appendix D.2.1. The number of causal links found for each pollutant

are very close to each other, with an average of 61.53 links per trial for NO2, followed

by O3 with 60.33 and PM2.5 with 59.93.
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Figure 6.6: Average causal links distribu-

tion for NO2 with linear PCMCI.
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Figure 6.7: Average causal links distribu-

tion for O3 with linear PCMCI.

These results provide insights into how the causality of the linear components in

the relationship between the breathing rate and the different pollutants behaves over an

extensive period of 20 hours. However, spurious results may occur if the relationship

is not truly linear [32], which seems to be the case since the linear correlation between



Chapter 6. Causal discovery method 31

them computed in Section 3.2 was very close to zero, especially for NO2.

6.2.2 Non-linear PCMCI

Using the CMIknn test in the PCMCI method with the temperature, humidity, breath-

ing rate and the three pollutants data is the most reliable experiment that can be done

to determine the causal relationships between the different time series with the avail-

able data. The test is general enough to discover any type of relationship, and every

possible cause for the breathing rate in the DAPHNE dataset has been included, since

the time of the day and activity level influence were removed in Section 4.4, therefore

satisfying the causal sufficiency assumption.

It is also the most computationally expensive experiment due to the generality of

the test and the fact that two new time series have been added (NO2 and O3). Neverthe-

less, the same procedure has been followed, performing a detailed analysis of the first

hour, and every ten minutes from then up to 8 hours. The execution of the algorithm

had to be parallelised across several machines, using threads to run on every core of

each of the machines (varying from 4 to 6 cores). The algorithm takes around 3 days

to evaluate all those time lags for a single trial, being the only process running in the

computer. There are 44 trials with less than 60% missing data and with enough data to

test time lags up to 8 hours (compared to 30 when testing up to 20 hours), so it would

have taken more than 4 months to run this experiment if it had not been parallelised.

Figures 6.8, 6.9, 6.10, 6.11, 6.12 and 6.13 show the distribution of the total number

of causal links obtained between past respiratory rate, temperature, humidity, PM2.5,

NO2 and O3 values, and the respiratory rate for all the trials at the different time lags.

The values shown for the first hour, where every time lag was tested, are the mean

number of links every 10 minutes.

The causal effect of the past breathing rate values is the strongest in the first hour,

but it decays swiftly as time passes. This is intuitive, since the breathing rate a minute

ago will certainly influence the current one. The same happens with the meteorological

factors, having a greater impact on the breathing rate in the first hour than the pollutants

and decaying afterwards, but with a slighter effect than past respiratory rate values.

The causal effect of PM2.5 on the breathing rate seems to be maintained through

the different time lags, although a peak in the causality can be observed between the

7th and 8th hour, following a decrease produced after the 6th hour. In contrast, the

effect of the gases (NO2 and O3) is much more pronounced in the first hour, followed
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by two peaks in the number of links for both of them, one in the mid term of the tested

interval, and another one in the last hour.
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Figure 6.8: Non-linear PCMCI causal link distribution for the breathing rate.
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Figure 6.9: Non-linear PCMCI causal link distribution for the temperature.

Table 6.1 shows the proportion of causal links found for each of the lagged vari-

ables with respect to the number of tested links, for both the first hour with 1 minute

resolution and the period from the 2nd to the 8th hour for which every time lag in ten

minutes steps have been tested. After the past breathing rate values, the humidity and

temperature have the strongest causal relationship with the breathing rate of the sub-

jects, especially in the first hour after the exposure. This was also observed in [14],

where the meteorological factors, including temperature and humidity, had a higher

association in the short term with the clinical visits of children due to asthma or other

allergies, although the impact on the breathing rate had never been examined.

The three pollutants obtained a sizeable proportion of causal links, meaning that

more than 1 out of 5 of the evaluated lagged concentrations of these pollutants have

a causal influence on the respiratory rate of the asthmatic subjects. The impact is

increased in the first hour period from the exposure to around 1 out of 4 tested time

lags. The proportion of causal links found for PM2.5 has been reduced a 1.59% with
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Figure 6.10: Non-linear PCMCI causal link distribution for the humidity.
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Figure 6.11: Non-linear PCMCI causal link distribution for PM2.5.

respect to when it was the only pollutant included, because some of the links can be

explained with the newly introduced NO2 or O3 information. Overall, the pollutant

with the highest impact on the breathing rate was the NO2, followed by PM2.5 and O3.

The more aggressive effect of NO2 in the short term compared to the other two has

been detected in previous work when studying the effects of the pollutants on other

indicators of respiratory problems (not on the breathing rate) [4, 14, 15].

These results demonstrate that the three pollutants (especially NO2 in the 1st hour)

have a strong causal relationship with the variations in the breathing rate of the asth-

matic subjects, while corroborating that the meteorological factors have an even higher

impact, mainly on the very short term. The detailed results for each subject have been

included in Appendix D.2.2.

The strength of the different causal links has also been assessed with the condi-

tional mutual information value of the non-linear test, being stronger when the mutual

information is higher. The resulting plots have also been included in Appendix D.2.2,

which indicate that the strength of the links for the pollutants and meteorological fac-

tors does not depend on the time lag, but rather on the subject (they have a higher
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Figure 6.12: Non-linear PCMCI causal link distribution for NO2.
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Figure 6.13: Non-linear PCMCI causal link distribution for O3.

impact on some subjects, which is why a personalised analysis has been made). In

contrast, the effect of past breathing rate values on the current one does depend on the

time lag for all of them, with a decaying strength as the time lag increases.

6.3 Personal vs static PM2.5

The machine learning experiments from Chapter 5 showed an almost identical per-

formance when predicting future breathing rate values for PM2.5 data collected from

both static and wearable sensors. Therefore, a final experiment was designed with

non-linear PCMCI to determine whether the use of static data could replace the one

collected by sensors carried by the patients. If the PCMCI results of both of them are

analogous, then there would be no need to use sensors to capture personal exposure

data, as the use of several static sensors around the city would be sufficient.

The same experiment as in Section 6.2.2 was carried out, but substituting personal

exposure PM2.5 data with data from the static AIRSpeck sensors. Although the total

proportion of causal links is similar to the one obtained with personal exposure PM2.5
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Detailed 1st hour 2nd to 8th hour Total

Breathing rate 65.45% 16.13% 45.14%

Temperature 33.86% 15.31% 26.22%

Humidity 54.39% 23.54% 41.69%

PM2.5 24.92% 18.51% 22.28%

NO2 26.63% 17.80% 22.99%

O3 26.02% 15.48% 21.68%

Table 6.1: Proportion of causal links with the breathing rate found with PCMCI for the

different lagged variables for the 1st hour, the 2nd to 8th hour period and for both.

data (21.83%), the distribution of the links is not the same. The causal links that co-

incide for both approaches only represent a 34.61% of the links found by the personal

PM2.5 data, and a 35.19% of the ones found by the static one. The plot showing the

causal links differences has been included in Appendix D.2.2.7.

There can be two main reasons for this. The first one is that the static data has

a greater percentage of missing data, mainly because the static sensors report data

every 5 minutes and the personal ones do it every minute. Therefore, a much higher

percentage of the data needs to be imputed (via interpolation or the mean as explained

in Section 4.3), which makes it less reliable. The second one is that the static sensors

may not gather what the subjects are really exposed to, due to being on average at

182.26 metres from them for the PM2.5 data. The percentage of missed causal links

(detected by personal but not static data) and false positives (only detected by static

data) has been plotted for the trials that were close enough to the sensors (< 30 metres

on average) on Figures 6.14 and 6.15. There is a trend of increases on both percentages

as the average distance from the sensors goes up, confirming this second point.
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Figure 6.14: Missed links static PM2.5
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Figure 6.15: FP static PM2.5
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Exposure-response relationship

PCMCI can determine whether there is a causal link between two time series with a

certain time lag, but it does not yield the type of relationship between them. There-

fore, a method is required to determine how the breathing rate behaves, in terms of

increases or decreases, when the different pollutant concentrations increase at causal

links between them and the respiratory rate.

The first attempt was to do it with the machine learning methods of Chapter 5.

Since the PCMCI conditional independence test used is non-linear and uses a k nearest

neighbour approach, the KNN machine learning model was the best suited method for

the task. The initial experiment was done for PM2.5 and each lag of the first hour, fitting

the model with the same variables used in PCMCI and tuning the hyper-parameters.

The breathing rate value was predicted after applying an inter-quartile range increase

to the PM2.5 concentration, and it was compared to the respiratory rate without the

PM2.5 increase. The result was that only a 5.13% of the causal links between PM2.5

and the respiratory rate resulted in breathing rate increases when the pollutant concen-

tration increased, as shown in the plot of Appendix E.1. Nevertheless, this result is

not conclusive, since the error of the machine learning models shown in Chapter 5 is

too high when compared to the scale of the data, which could easily affect the task of

determining whether the breathing rate would go up.

A second (and much more reliable) experiment was developed. It is explained

in Algorithm 4, where for each pollutant an increase is determined when there is a

concentration value higher than the mean of the past values up to a maximum time

window by more than a certain percentage threshold.

The percentage of the time lags where causal links were found, for which a pol-

lutant concentration increase corresponds to a breathing rate increase (worsening the

36
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patient’s condition) for the three pollutants have been plotted in Figures 7.1, 7.2 and

7.3, where each line represents a different percentage threshold. The threshold does

not seem to make a big difference in the percentage, as almost all of them follow the

same trend. In contrast, for the three pollutants, the percentage increases as the consid-

ered window size goes up, always reaching more than a 50% for all the pollutants with

window sizes of more than 200 minutes. These results suggest that in order to make

the respiratory rate of the asthmatic subjects go up, the pollutant concentration needs to

augment to higher levels than what the patient has been exposed to in the recent hours.

The full results, detailed for each time lag and trial have been plotted in Appendix E.2.

Algorithm 4 Breathing rate variation with a pollutant concentration increase.
Input: Trial and pollutant to consider, time lags with causal links: causal time lags.

percentage thresholds = All percentages from 5% to 300% in steps of 5.

time windows = All window sizes from 10 min. to 4 hours in 10 min. steps.

for all percentage thresholds and time windows do
for all causal time lags do

for all pollutant values in the pollutant time series of the trial do
if the pollutant value is higher that the average of the past time window

values by more than the evaluated percentage threshold then
Add to a counter the percentage of variation between the mean breathing

rate in the time window and the one after the evaluated time lag.

end if
end for
Compute the average variation dividing the counter by the number of added

percentages and set it for the evaluated time lag, window and threshold.

end for
end for
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Figure 7.1: PM2.5 increases
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Figure 7.2: NO2 increases
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Figure 7.3: O3 increases



Chapter 8

Conclusions

8.1 Discussion

For the first time, a causal relationship has been demonstrated between exposure to

nitrogen dioxide, ozone and PM2.5, and the breathing rate of asthmatic adolescents.

The dataset gathered by the DAPHNE project has been used for this purpose, which

includes the respiratory rate data of 127 asthmatic adolescents and the pollutant con-

centration data they were exposed to in Delhi, India. Wearable sensors were used for

PM2.5 and static sensors for NO2 and O3. The data has been pre-processed for the

analysis as described in Chapter 4, including the calibration of NO2 and O3 data so

that the values are comparable across sensors.

Firstly, the association between the pollutants and the breathing rate has been ev-

idenced using a variety of linear and non-linear machine learning models to predict

the current breathing rate of each subject based on past respiratory rate and pollutant

concentration values. It was demonstrated with all the models, that the three pollutants

encode information about the future breathing rate behaviour, even having a better

prediction performance than past breathing rate values.

A recently-published causal discovery method (PCMCI) has also been used to as-

sess the causality between them at different time intervals in the short term, for time

lags ranging from 1 minute up to 20 hours for linear relationships, and up to 8 hours

for non-linear ones. The previous work with this method in [17] assessing the causality

between the respiratory rate and the past breathing rate, temperature, humidity and the

PM2.5 pollutant data for a limited set of time lags up to 60 minutes, has been extended

in this work and corrected so that the non-linear PCMCI cases can be reproduced. The

results showed a strong causal relationship between PM2.5 and the breathing rate.

38
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In order to satisfy the PCMCI causal sufficiency assumption, the experiments were

repeated including the NO2 and O3 data in the analysis. A very strong relationship was

found for the three of them, having a causal association in more than 20% of the eval-

uated time lags between the exposure to the pollutant and the breathing rate response

of the subject, taking into account that the method has a strong false positive control.

Therefore, the fact that the three pollutants directly cause changes in the breathing rate

of the asthmatic adolescents subjects after a period of time from the exposure has been

demonstrated. The pollutant with the highest proportion of causal links was NO2 with

a 22.99% of the total tested lags being causal, which is higher in the first hour with

a 26.63%. It is also the pollutant with the stronger association found with other indi-

cators of respiratory problems in previous work [4, 14, 15]. The other gas, O3, has a

very similar causal link distribution, being higher in the first hour and decaying after-

wards, although with a lower proportion of links. PM2.5 was the second pollutant with

the highest percentage of causal links, having a lower proportion in the first hour than

the two gases but maintaining the links in the subsequent hours, even having a peak

between the 7th and 8th hours.

This analysis also corroborated that the humidity and temperature have a stronger

causal association in the short term than the pollutants, as it was discovered in [14] for

children clinical visits related to respiratory problems. It is much more pronounced in

the first hour, decaying as the time lag between the exposure and the response goes up.

Furthermore, the importance of using personal exposure data for PM2.5 instead of

data from static sensors at a distance from the subject (as it is common in previous

work like [36]) has been demonstrated. The machine learning experiments showed a

very similar performance for the PM2.5 data gathered from the personal sensors and

the one from the static sensors when predicting the breathing rate. Therefore, the last

PCMCI experiment was repeated but using the static sensor data for PM2.5. The results

were quite different, discovering with the static data only 34.61% of the links found

with the wearable sensors, with a 64.81% of the causal links found by the static PM2.5

not found by the personal exposure data (which could be seen as false positives). An

important factor for this is that the static sensor has a larger amount of missing data,

but also the distance of the subjects from the sensors was demonstrated to influence

the amount of missed links and false positives for trials that were close on average to

the static sensors (< 30 metres), showing the advantage of using wearable sensors.

The exposure-response relationship between the pollutants and the breathing rate

has also been studied, using a sliding window strategy explained in Algorithm 4 to
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determine whether the breathing rate goes up (which is an asthma symptom) when

the different pollutant concentrations increase. The experiments concluded that for

the majority of the time lags with causal links, the respiratory rate goes up when the

pollutants concentrations increase to higher levels than the average of at least the past

200 minutes. From that time window on, more than 50% of the causal links resulted

in breathing rate increases for the three pollutants. The use of the machine learning

methods was considered not suitable for the task, due to the high prediction error they

produced compared to the scale of the data.

Therefore, the principal objective of determining the causality between the pollu-

tants and the breathing rate of the asthmatic subjects, as well as the secondary one of

estimating the exposure-response relationship with the increases of the breathing rate,

have been accomplished.

8.2 Future work

All of the mentioned experiments have been done personalised to each subject, so the

obtained results will allow to estimate accurately the effect that the different pollution

levels will have on each subject’s respiratory condition. To do so, future work should

focus on providing an equation form for each of the subjects that determines their

breathing rate based on the lagged observations of pollutants, breathing rate and the

meteorological factors for which a causal relationship has been found in this research.

Deep learning techniques which have been developed specifically to deal with time

series could be used for this task. A long short-term memory, which is a recurrent

neural network introduced in [13] that can take into account long term time lags, could

be used to determine the coefficients of each of the variables of the equation. These

variables need to be determined, most likely performing data transformations with the

original lagged time series for which a causal link have been found in this project.

This is not a trivial task, since a vast amount of data is involved. The dataset for a

trial with 150 causal links across the 6 variables included in PCMCI (the mean amount

of causal links is approximately 183) and using a polynomial transformation of degree

3 for determining the equation variables, would consist of 585276 time series, more

than 1685 million data points if the trial has 48 hours of data. This qualifies for a new

research project, since different dimensionality reduction techniques should be tested,

as well as different data transformations and machine/deep learning models to provide

the most accurate analytical expression for the breathing rate of each subject.
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Appendix A

Exploratory data analysis

A.1 RESpeck data

This section includes the numeric results of the descriptive statistics taken for the RE-

Speck device data.

Mean Q1 Median Q3 Minimum Maximum Mode

21.380 18.126 20.993 24.053 8.049 44.175 22.088

Table A.1: Respiratory rate location measures.

Standard deviation Variance MAD IQR Range

4.404 19.401 2.959 5.927 36.126

Table A.2: Respiratory rate scale measures.

Skewness Galton’s measure of skewness Kurtosis Robust kurtosis

0.634 0.033 0.544 1.216

Table A.3: Respiratory rate shape measures.
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Measure
Time lag 0 min 5 min 15 min 30 min 60 min

Pearson’s correlation coefficient 0.335 0.245 0.224 0.208 0.197

Kendall’s tau 0.298 0.284 0.271 0.258 0.238

Table A.4: Respiratory rate correlation measures.

A.2 AIRSpeck data

This section includes the numeric results of the descriptive statistics taken for the AIR-

Speck devices data.

Mean Q1 Median Q3 Minimum Maximum Mode

PM2.5 81.261 18.231 41.044 97.73 0 19081.356 0

NO2 4981.935 4632 4800 4944 0 32767 32767

O3 8750.063 6677 6859.5 6969 0 65535 65535

Temp. 30.739 26.1 32.9 37.05 -46.800 128.8 0

Hum. 47.971 41.25 48.05 55.3 0 101.3 0

Table A.5: AIRSpeck data location measures.

Standard deviation Variance MAD IQR Range

PM2.5 178.470 31851.649 28.519 79.499 19081.356

NO2 3734.743 1.395e+07 152 312 32767

O3 11086.666 1.229e+08 134.833 292 65535

Temp. 10.700 114.488 5.200 10.950 175.600

Hum. 11.714 137.207 7 14.050 101.300

Table A.6: AIRSpeck data scale measures.
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Skewness Galton’s skewness Kurtosis Robust kurtosis

PM2.5 37.771 0.426 2619.048 1.635

NO2 6.142 -0.077 42.036 1.753

O3 4.607 -0.250 20.254 1.683

Temp. 0.188 -0.242 15.171 0.918

Hum. -0.605 0.032 3.087 1.219

Table A.7: AIRSpeck data shape measures.

Feature
Time lag 0 min 5 min 15 min 30 min 60 min

PM2.5 0.0063 0.01 0.0115 0.0106 0.008

NO2 0.0003 0.0013 0.0018 0.0043 -0.0022

O3 0.0203 0.0205 0.0209 0.0217 0.0154

Temp. 0.0689 0.0674 0.0653 0.0618 0.056

Hum. -0.0056 -0.006 -0.0042 -0.0007 0.0039

Table A.8: AIRSpeck data Kendall’s tau with breathing rate.

A.3 School and community sensors comparison

This sections shows some examples of the comparison made between the community

and school sensor data (both outdoor sensors) to check whether they are similar.

Figure A.1: Community sensor used as

school sensor for O3.

Figure A.2: First community and school

sensor comparison for O3.
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Figure A.3: Second community and

school sensor comparison for O3.

Figure A.4: Community sensor used as

school sensor for NO2.

Figure A.5: First community and school

sensor comparison for NO2.

Figure A.6: Second community and

school sensor comparison for NO2.



Appendix B

Data pre-processing

B.1 October-November 2019 calibration

This section contains the graphs corresponding to the calibration of the October-November

2019 period of time, when the sensors were 1 km away from the reference one.
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Figure B.1: Mean RMSE of fit-to-all and

CV for O3.
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Figure B.2: Mean MAE of fit-to-all and CV

for O3.
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Figure B.3: Mean percentage error in-

crease from fit-to-all to CV for O3.
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Figure B.4: Mean RMSE of fit-to-all and

CV for NO2.
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Figure B.5: Mean MAE of fit-to-all and CV

for NO2.
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Figure B.6: Mean percentage error in-

crease from fit-to-all to CV for NO2.

B.2 January-April 2020 calibration

This section contains the graphs corresponding to the calibration of the January-April

2020 period of time, when the sensors were right next to the reference one.
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Figure B.7: Mean RMSE of fit-to-all and

CV for O3.
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Figure B.8: Mean MAE of fit-to-all and CV

for O3.
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Figure B.9: Mean percentage error in-

crease from fit-to-all to CV for O3.
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Figure B.10: Mean RMSE of fit-to-all and

CV for NO2.
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Figure B.11: Mean MAE of fit-to-all and

CV for NO2.
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Figure B.12: Mean percentage error in-

crease from fit-to-all to CV for NO2.

B.3 2019-2020 calibration comparison

This section contains the comparison of the calibration between the October-November

2019 and January-April 2020 for the different sets of features.
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Figure B.13: Relative RMSE with 4 fea-

tures for O3.
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Figure B.14: Relative RMSE with 6 fea-

tures for O3.
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Figure B.15: Relative RMSE with 7 fea-

tures for O3.
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Figure B.16: Relative RMSE with 4 fea-

tures for NO2.
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Figure B.17: Relative RMSE with 6 fea-

tures for NO2.
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Figure B.18: Relative RMSE with 7 fea-

tures for NO2.

B.4 Sensor error

This section contains the plot of the sensor that resulted on an RMSE increase in Fig-

ures 4.3 and 4.4, whose data was not included in the calibration because of the error

produced at a time point.
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Figure B.19: Sensor NO2 data before and after calibrating it, which failed at a time point.



Appendix C

Machine learning experiments

C.1 Personal PM2.5 results

This section contains the machine learning results for all the trials for which personal

PM2.5 data is available.
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Figure C.1: Ridge regression average er-

ror comparison personal PM2.5.
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Figure C.2: Huber regression average er-

ror comparison personal PM2.5.
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Figure C.3: Random forest average error

comparison personal PM2.5.
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Figure C.4: KNN regression average error

comparison personal PM2.5.
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Figure C.5: SVR regression average error comparison personal PM2.5.

C.2 Personal PM2.5 results

This section contains the machine learning results for all the trials for which personal

PM2.5, NO2 and O3 data is available.
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Figure C.6: Ridge regression average er-

ror comparison all pollutants.
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Figure C.7: Huber regression average er-

ror comparison all pollutants.
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Figure C.8: Random forest average error

comparison all pollutants.
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Figure C.9: KNN regression average error

comparison all pollutants.
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Figure C.10: SVR regression average error comparison all pollutants.
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PCMCI experiments

D.1 Only for PM2.5

D.1.1 Linear PCMCI

This section shows the link distribution for all the trials tested in linear PCMCI for

personal PM2.5 exposure data.
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Figure D.1: Distribution of causal links for all the trials for linear PCMCI with personal

PM2.5 exposure data.
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D.1.2 Non-linear PCMCI

This section contains the link distribution information for the trials tested in non-linear

PCMCI for personal PM2.5 exposure data that was not included in the main docu-

ment, for both the 8 hours and the detailed first hour. It includes the color maps for

both, which represent the p-values that PCMCI returns when testing causality with the

breathing rate for each trial and each time lag. When the p-value is <= 0.05, then the

result is statistically significant to determine that there is a causal link, which is plotted

in green. Those combinations of trials and time lags who were close to be statistically

significant (0.05 < p-value <= 0.1) are plotted in yellow, and the rest in red.
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Figure D.2: Number of links per trial.
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Figure D.3: Causal links p-values color map.
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Figure D.4: Distribution of causal links over the first hour.
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Figure D.5: Number of links per trial.



Appendix D. PCMCI experiments 62

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Delay (Minutes)

DAP001(3)
DAP011(3)
DAP014(2)
DAP016(1)
DAP018(1)
DAP022(2)
DAP028(2)
DAP030(1)
DAP031(2)
DAP042(2)
DAP048(2)
DAP050(1)
DAP051(1)
DAP053(1)
DAP054(1)
DAP056(3)
DAP057(3)
DAP058(1)
DAP059(2)
DAP060(1)
DAP067(1)
DAP067(2)
DAP072(1)
DAP075(1)
DAP075(2)
DAP077(1)
DAP080(1)
DAP081(1)
DAP082(1)
DAP084(1)
DAP084(2)
DAP086(2)
DAP087(1)
DAP088(1)
DAP090(1)
DAP091(1)
DAP092(1)
DAP093(1)
DAP094(1)
DAP095(1)
DAP095(2)
DAP096(2)
DAP097(2)
DAP101(1)
DAP104(1)
DAP105(1)
DAP106(1)
DAP108(1)
DAP109(1)
DAP110(1)
DAP114(1)
DAP121(1)
DAP123(1)
DAP125(1)
DAP126(1)

Tr
ia

l

0.0

0.2

0.4

0.6

0.8

1.0

Figure D.6: Causal links p-values color map.

D.2 PM2.5, NO2 and O3

D.2.1 Linear PCMCI

This section includes the linear PCMCI graphs that could not be included in the main

document due to space restrictions.



Appendix D. PCMCI experiments 63

D.2.1.1 PM2.5

0 200 400 600 800 1000 1200
Time lag (minutes)

0

1

2

3

4

5

6

7

Nu
m

be
r o

f l
in

ks

Figure D.7: Number of links per time lag

for PM2.5.
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Figure D.8: Number of links distribution for

PM2.5.
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Figure D.9: Distribution of causal links for all the trials for linear PCMCI with personal

PM2.5 exposure data.
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Figure D.10: Number of links per time lag

for NO2.
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Figure D.11: Number of links distribution

for NO2.
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Figure D.12: Distribution of causal links for all the trials for linear PCMCI with NO2 data.
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Figure D.13: Number of links per time lag

for O3.
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Figure D.14: Number of links distribution

for O3.
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Figure D.15: Distribution of causal links for all the trials for linear PCMCI with O3 data.

D.2.2 Non-linear PCMCI

This section contains the detailed results per trial of non-linear PCMCI when using

past breathing rate values, temperature, humidity, PM2.5, NO2 and O3 data, that could

not be included in the main document due to space constraints. It includes the color

maps that represent the p-values that PCMCI returns when testing causality with the

breathing rate for each trial and each time lag. When the p-value is <= 0.05, then the

result is statistically significant to determine that there is a causal link, which is plotted

in green. Those combinations of trials and time lags who were close to be statistically
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significant (0.05 < p-value <= 0.1) are plotted in yellow, and the rest in red. It also

includes the color map depicting the strength of the causal links found with a more

intense tone when the link is stronger.
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Figure D.16: Distribution of causal links for all the trials for non-linear PCMCI with PM2.5

data for the 1st hour
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Figure D.17: Causal link intensity for non-linear PCMCI with PM2.5 data for the 1st hour
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Figure D.18: Distribution of causal links for all the trials for non-linear PCMCI with PM2.5

data from the 2nd to 8th hour
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Figure D.19: Causal link intensity for non-linear PCMCI with PM2.5 data from the 2nd to

8th hour
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Figure D.20: Distribution of causal links for all the trials for non-linear PCMCI with NO2

data for the 1st hour
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Figure D.21: Causal link intensity for non-linear PCMCI with NO2 data for the 1st hour
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Figure D.22: Distribution of causal links for all the trials for non-linear PCMCI with NO2

data from the 2nd to 8th hour
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Figure D.23: Causal link intensity for non-linear PCMCI with NO2 data from the 2nd to

8th hour
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Figure D.24: Distribution of causal links for all the trials for non-linear PCMCI with O3

data for the 1st hour
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Figure D.25: Causal link intensity for non-linear PCMCI with O3 data for the 1st hour
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Figure D.26: Distribution of causal links for all the trials for non-linear PCMCI with O3

data from the 2nd to 8th hour
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Figure D.27: Causal link intensity for non-linear PCMCI with O3 data from the 2nd to 8th

hour
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Figure D.28: Distribution of causal links for all the trials for non-linear PCMCI with past

breathing rate data for the 1st hour
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Figure D.29: Causal link intensity for non-linear PCMCI with past breathing rate data for

the 1st hour
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Figure D.30: Distribution of causal links for all the trials for non-linear PCMCI with past

breathing rate data from the 2nd to 8th hour
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Figure D.31: Causal link intensity for non-linear PCMCI with past breathing rate data

from the 2nd to 8th hour
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Figure D.32: Distribution of causal links for all the trials for non-linear PCMCI with tem-

perature data for the 1st hour
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Figure D.33: Causal link intensity for non-linear PCMCI with temperature data for the

1st hour
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Figure D.34: Distribution of causal links for all the trials for non-linear PCMCI with tem-

perature data from the 2nd to 8th hour



Appendix D. PCMCI experiments 88

70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

41
0

42
0

43
0

44
0

45
0

46
0

47
0

48
0

Delay (Minutes)

DAP127(1)
DAP125(1)
DAP122(1)
DAP120(1)
DAP119(1)
DAP114(1)
DAP111(1)
DAP110(1)
DAP106(1)
DAP104(1)
DAP101(1)
DAP098(2)
DAP095(2)
DAP095(1)
DAP094(1)
DAP093(1)
DAP091(1)
DAP089(1)
DAP087(1)
DAP083(1)
DAP082(1)
DAP080(1)
DAP077(1)
DAP076(2)
DAP075(1)
DAP072(2)
DAP069(1)
DAP067(2)
DAP066(1)
DAP058(1)
DAP057(2)
DAP057(1)
DAP056(3)
DAP056(2)
DAP048(2)
DAP042(2)
DAP037(2)
DAP031(2)
DAP017(2)
DAP016(1)
DAP014(2)
DAP008(3)
DAP007(3)
DAP001(2)

Tr
ia

l

0

3 × 10 2

Figure D.35: Causal link intensity for non-linear PCMCI with temperature data from the

2nd to 8th hour
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D.2.2.6 Humidity
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Figure D.36: Distribution of causal links for all the trials for non-linear PCMCI with hu-

midity data for the 1st hour
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Figure D.37: Causal link intensity for non-linear PCMCI with humidity data for the 1st

hour
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Figure D.38: Distribution of causal links for all the trials for non-linear PCMCI with hu-

midity data from the 2nd to 8th hour
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Figure D.39: Causal link intensity for non-linear PCMCI with humidity data from the 2nd

to 8th hour

D.2.2.7 Personal vs static PM2.5

The following color map shows the causal links that coincide for personal and static

PM2.5 in green, the ones only found by static PM2.5 in blue, only for the personal data

in yellow and the time lags for which no links were found in red.
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Figure D.40: Personal vs static PM2.5 causal links
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Exposure-response relationship

This chapter includes the plots from the experiments carried out to determine whether

the breathing rate increases with the pollutant concentrations, that could not be in-

cluded in the main document due to space constraints.
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E.1 KNN machine learning model
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Figure E.1: Average changes in the breathing rate with an IQR increase of the PM2.5

concentration, predicted by the KNN model.

E.2 Sliding window strategy

This section contains the results with the highest percentage of breathing rate increases

with pollutant increases in the causal links. The white cells in the color maps indicate

that there are no causal links there.
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E.2.1 PM2.5
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Figure E.2: Average changes in the breathing rate with an increase of the PM2.5 con-

centration, with a window size of 150 minutes and a minimum increase threshold of

115% for the 1st hour.
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Figure E.3: Average changes in the breathing rate with an increase of the PM2.5 con-

centration, with a window size of 150 minutes and a minimum increase threshold of

115% from the 2nd to the 8th hour.
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E.2.2 NO2
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Figure E.4: Average changes in the breathing rate with an increase of the NO2 concen-

tration, with a window size of 240 minutes and a minimum increase threshold of 50%

for the 1st hour.
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Figure E.5: Average changes in the breathing rate with an increase of the NO2 concen-

tration, with a window size of 240 minutes and a minimum increase threshold of 50%

from the 2nd to the 8th hour.
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E.2.3 O3
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Figure E.6: Average changes in the breathing rate with an increase of the O3 concen-

tration, with a window size of 220 minutes and a minimum increase threshold of 110%

for the 1st hour.
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Figure E.7: Average changes in the breathing rate with an increase of the O3 concen-

tration, with a window size of 220 minutes and a minimum increase threshold of 110%

from the 2nd to the 8th hour.

E.3 Breathing rate increases coincidences

The following color maps show the coincidences in the increase of the breathing rate

when each of the pollutants increase. The white cells indicate that the breathing rate

does not go up with any of the pollutants.
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Figure E.8: Simultaneous breathing rate increases for increases of the three pollutants

in the 1st hour.
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Figure E.9: Simultaneous breathing rate increases for increases of the three pollutants

from the 2nd to the 8th hour.


