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Abstract

Air pollution levels in urban centres are a worldwide environmental and health concern.

This work has investigated machine learning techniques to analyse airborne particulate

data in a selection of indoor-outdoor micro-environments. A novel source apportion-

ment method has been developed based on the particle size distributions data produced

by the Airspeck monitors for classifying dominant airborne particulate sources in a

mixture of selected pollution sources. A series of classifiers were trained on various

data sets which consisted of both individual pollution source measurements as well as

data sets created through taking a linear combination of either the individual pollution

source bin counts or particle size distributions to form mixtures of pollution sources.

Data sets generated by approximating the individual pollution sources as MVG random

variables were also investigated. It was found that by creating a data set consisting of

mixtures of the individual pollution sources using either the particle counts or parti-

cles size distributions that the overall classification performance could be improved.

The second major contribution is an indoor-outdoor classifier based on the personal

Airspeck data which learns and adapts to unseen micro-environments. At its core is

a variation of the co-training algorithm which exploits the rich variety of features in

the location, environment and air quality measurements. The indoor-outdoor classifier

was integrated into the source apportionment system, which improved its F1 score in

nearly all the cases by using the indoor-outdoor label as an additional feature. The

third contribution was an investigation into the prediction of elemental composition

of the airborne pollution from the Airspeck particle size distribution information for

a selected micro-environment (road-side traffic junctions) in two locations in London.

Given the limited number of leaf samples available for examining traffic related de-

posits in a Scanning Electron Microscope (SEM), machine learning methods were no

better than baseline methods of using the averages of training elemental composition

measurements.
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Chapter 1

Introduction

Airborne pollutants have been linked to environmental effects such as acid rain [10],

ozone depletion [32] and Eutrophication [24] as well as health conditions in humans

such as cardiovascular diseases [29][20], various cancers [17] and even skin diseases

[3]. It is apparent that being able to monitor and understand air pollution levels is of

vital importance. Airspeck [4][5] is a set of devices which can be used to monitor var-

ious features relating to the local air quality in the vicinity of the sensor. Features such

as the Particulate Matter (PM) under a certain size, particle size fractions, temperature

and Relative Humidity (RH) and GPS can all be measured. The Airspeck-P measures

all of the above while being portable and the Airspeck-S is a static sensor which can

additionally measure other gas information such as NO2 and O3 concentrations.

The micro environments that we interface with on a daily basis heavily influence

the pollution sources that the average person is exposed to. The pollution sources that a

person may be exposed to while at home will likely be very different to those that a per-

son may be exposed to while standing at a road junction with a heavy traffic flow. Un-

derstanding the pollution sources that might be found in various micro-environments

is an ongoing open area of research [14][33][21]. This work aims to build machine

learning tools which can be used to better understand the pollution sources and levels

within various micro environments. The main contributions of this dissertation are:

1. An indoor/outdoor classification system which using the measurements from the

Airspeck-P can predict whether a new measurement was taken either indoors or

outdoors.

2. A source apportionment system using machine learning methods which can clas-

sify the dominant pollution source from a mixture of known pollution sources.

1



Chapter 1. Introduction 2

3. An evaluation of the changes in the concentrations of airborne particulates less

than 2.5 microns in diameter (PM2.5), nitrogen dioxide and ozone based on data

gathered from a network of four Airspeck monitors located in South Kensing-

ton as London emerged from the lockdown restrictions due to the COVID-19

pandemic.

4. An investigation of the elemental composition of roadside particulate deposits

on leaf samples in the vicinity of the Airspeck monitors and relating them to

Particle Size Distribution produced by the Airspeck monitor.

The novel results presented in this dissertation are:

1. Three methods to mix individual pollution source data and the resulting source

apportionment classifiers were evaluated using data sets created by mixing the

PSDs, raw particle counts and by modelling the PSD as random variables to

enable enable classifiers to learn more robust decision boundaries.

2. The second novel contribution of this work was to develop and transfer state of

the art semi-supervised learning techniques from the mobile phone domain to

the Airspeck-P to evaluate whether the air quality measurements can be used to

determine if a device is either indoors or outdoors and more importantly learn

from new measurements in previously unseen micro environments.

3. The indoor/outdoor classification system was integrated into the source appor-

tionment system and shown to increase the overall performance over using only

the particle size information.

This report is split into four main sections. Chapter 2 will summarise any related

work, as well as the data and machine learning algorithms used. Chapter 3 summarises

the methodologies for how the data was pre-processed, while chapter 4 summarises the

experiments conducted and evaluation metric used. Chapter 5 presents the results with

a detailed analysis. Finally, Chapter 6 summarises the findings and presents potentially

fruitful avenues of further research.



Chapter 2

Background

2.1 Related Work

Indoor/outdoor detection is an open research task with relevance in many areas. In par-

ticular with mobile phones due to the multitude of available measurements [34][28].

Previous work investigated using the GPS signal such as Hansen et al. [16] who

showed the GPS signal strength is an important feature in determining whether a mo-

bile phone is indoors or outdoors, however, later work has shown that the GPS signal

variability and signal to noise ratio [22] is a stronger feature for classification. There

are other measurements on mobile devices which can aid in outdoor/indoor classifica-

tion. Many of these features are too weak on their own to make an accurate classifi-

cation, but when additional features such as temperature [25][36] are coupled with the

GPS features this can increase the classification accuracy.

All of the methods discussed so far have used supervised learning techniques to

predict whether a device is outdoors or indoors. These techniques require large quan-

tities of labelled data from numerous sources which cover different locations, times of

day and season in order to build classifiers which are robust for use. Another method

is to use semi-supervised learning techniques which can use new unlabelled data to

improve classification performance and adapt to new environments that the classifier

may not have been previously exposed to.

An important piece of work by Radu et al [36] investigated using both supervised

and semi-supervised methods for outdoor/indoor classification of a mobile phone. It

was shown that based using the available features from the mobile phone it was pos-

sible to accurately build a classifier which could predict whether the phone was either

indoors or outdoors. It was also shown that certain features such as the GPS strength

3



Chapter 2. Background 4

and variability, and the cell signal were very strong features for classification. A num-

ber of semi-supervised learning algorithms were also tested by training a set of initial

classifiers using data from a specific data and then using semi-supervised classification

techniques such as cluster-then-label, self training and co-training [8]. It was found

that co-training gave the best results and performance could be improved by learn-

ing from new unlabelled data. Co-training uses two classifiers to label the unlabelled

data, with the final label being selected from the classifier with the highest confidence.

Co-training has been shown to be effective in a number of different domains, how-

ever it is vital that the two classifiers are trained using features which are conditionally

independent [8].

Buzatu [9] built an indoor/outdoor classification system using an Airspeck-P and

mobile phone. It was shown that by using GPS features from the phone, as well as

particle size information and temperature, relative humidity and light intensity that an

accurate indoor classification algorithm could be built. However, it was also observed

that for new environments that the generalisation performance of the trained classifiers

also degraded indicating that a semi-supervised approach could improve the generali-

sation performance to new unseen environments.

Source apportionment is the process of determining where a specific pollution

source has originated from. Traditionally this is done on a macro scale in order to de-

termine the specific source of the pollution from for example industrial air [26][18][15]

and water [7], or from the effects of weather systems [30][42]. Traditionally airborne

particulate pollution source apportionment methods involve expensive instrumentation

used to measure specific pollutants to enable common techniques like chemical ele-

ment balances [12][23] or receptor models [6].

In recent years machine learning methods have been employed in a wide variety of

source apportionment applications. For example Requia et al [37] used methods such

as ordinary kriging and random forests to spatially predict the specific concentrations

of PM2.5 components. Other work has used methods such as positive matrix factori-

sation with support vector machines to develops source apportionment techniques for

trace elements in rivers [11]. Buzatu [9] used machine learning techniques in conjunc-

tion with measurements from the Airspeck-P in order to classify a number of indoor

pollution sources with a good level of accuracy. Sanatani [38] extended this further

in order to classify multiple pollution sources. In particular binary mixed pollution

data was generated by mixing the count data of one pollution source with the mean of

another. Although, in both cases there was poor generalisation to new micro environ-
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ments with no capacity to adapt.

Traffic particulates from traffic emissions contain many harmful elements which

have been shown to be toxic towards humans [27][19][13][31] with the levels of toxic-

ity being dependent on the elemental composition of the particulate matter [35]. How-

ever, being able to measure and quantify the toxicity to humans of particulate matter

from traffic emissions is still very challenging. Recent work shows that it is possible

to measure the compositions of traffic related particulates which have been deposited

on nearby vegetation [2].

2.2 Data Sources and Exploratory Data Analysis

2.2.1 Source Apportionment

This work classifies nine different pollution sources by fingerprinting the PSDs of the

individual pollution sources. The Airspeck devices contain an optical particle size

measurement which counts the number of airborne particles in given size ranges and

automatically counts them into different size fractions called bins (For the exact bin

ranges see Appendix A), which can be converted to the PSD (Sections 3.1.1). A data

set consisting of frying, deep-frying, boiling, burning incense, mosquito coil, cigarette

smoke and traffic pollution sources and a background class (no major sources of pol-

lution present) was compiled. Everything except the smoking and traffic data used the

data sets as specified by Sanatani [38]. The traffic pollution source data was collected

from the Airspeck-S sensor D849BF7848210A4A positioned in a high traffic area be-

tween the period of the 22nd June to the 4th July 2020 between the hours of 7am and

7pm for which there was expected to be heaviest amounts of traffic. The cigarette

smoke data was the data generated by Buzatu [9].

The PSDs of the individual pollution sources can be seen in Figure 2.1. The pol-

lution sources all have distinct PSDs however there are a number of pollution sources

with similar PSDs with some overlap observed in the variability of the results. For ex-

ample, the mosquito coil and deep frying are very similar, while incense and smoking

also appear to have similar PSDs. This could cause issues when attempting to classify

these pollution sources as they may not be fully separable when attempting to form a

decision boundary.

The PSDs of the multi source data can be seen in Figure 2.2. These were previ-

ously measured as reported by Sanatani [38]. It is observable that the PSDs from the
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(a) Background (b) Boiling (c) Mosquito Coil

(d) Deep Frying (e) Frying (f) Incense

(g) Smoking (h) Spraying (i) Traffic

Figure 2.1: Box plots showing the measured individual pollution source PSDs

mixed pollution sources are not equal mixtures of the individual sources. Many of the

pollution sources produce many more particles than others during the measurement.

For example, the measurements from burning incense typically has multiple orders of

magnitude more particles in the smaller size fractions than pollution sources such as

the mosquito coil.

In order to understand the difference between the individual and multiple pollution

sources, an Isomap dimensionality reduction transformation was applied to the PSDs

of all the data. The first and second scores of the decomposition can be seen in Figure

2.3a. This decomposition again highlights some of the pollution sources are of a high

degree of similarity. The mixed pollution sources which contain incense smoke are

very similar to one another and also to the individual incense PSD. Again, this is not

surprising as the raw incense pollution sources contains many more particles than other
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(a) Boiling and Frying (b) Smoking and Mosquito Coil

(c) Mosquito Coil and Incense (d) Smoking and Incense

Figure 2.2: Box plots showing the measured mixed pollution source PSDs

pollution sources and therefore will heavily skew the mixed probability distribution

towards the individual incense distribution.

Finally, the degree of class imbalance was evaluated. It was found that some of the

classes had many more samples than others. The maximum number of samples within

a class was then set at 670 by subsampling the data from a particular pollution source

with more than the maximum allowable samples. The classes were still imbalanced

(between 90 and 670 measurements per class) which was overcome by using class

weighting during training and the F1 score for assessment.

2.2.2 Indoor/Outdoor classification

The data used in this section was primarily the same as the data used for the source

apportionment work (Section 2.2.1). The main difference in this section, was that the

measurements were only used if they were collected from the portable Airspeck-P,
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(a) (b)

Figure 2.3: Isomap decomposition of the source apportionment data

as the movement of the device as determined by the GPS was thought to be key to

understanding whether the device is indoors or outdoors. The measurements consisted

of three sets of features: total bin counts and particle size information, temperature and

humidity, and GPS related measurements. The indoor data sets consisted of all of the

source apportionment data, including the cooking and burning data as well as general

indoor data which has been specifically labelled for this purpose. Other outdoor data

which was added to the data set included data collected as part of other projects during

walks around specific parts of Edinburgh. After combining the data sets the number of

samples in each of the indoor and outdoor classes were balanced, consisting of a total

of 10266 samples.

2.2.3 Traffic Toxicity Prediction

Air quality data was collected from four static Airspeck-S sensors installed at four

junctions in South Kensington, London. Compare to the Airspeck-P, the Airspeck-

S additionally measure the concentration gases such as nitrogen dioxide and ozone.

These sensors were installed on 15th May and have been used to monitor the pollution

levels in London as the economic activity in London ramps back up after the recent

lock down events.

Additionally, samples of leaves in the vicinity to the sensors were collected on

three specific dates. These leaves were then analysed by the Department of Materials,

Imperial College London, using Scanning Electron Microscopy (SEM) by sampling

a number of individual particles at random across the leaves’ surface. This analysis

resulted in a composition of elements for each of the measured particles on the leaves
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surface allowing for an average elemental composition for each sample to be deter-

mined as shown in Figure 2.4. A number of the dominant elements can be attributed to

traffic related pollution. For example, calcium is one of the main elements measurable

in the particulate matter from the emissions of vehicular pollution as it is used as a fuel

additive [41]. Iron particles are probably as a result of wear and tear of the pads during

braking, and the engine parts during combustion, although the particle sizes in the case

of the latter would be smaller than those detected in this exercise [41]. The composi-

tion of iron in the particles from the Kensington Gore samples are much higher than

those at the Christ Church site and this is thought to be because the Kensington Gore

site is on a busy junction where a lot of traffic will need to stop.

Figure 2.4: Elemental Composition of the Leaf Samples

Typically the elements measured are not normally found in their raw state, but as

some kind of compound. A correlation analysis (Figure 2.5) was conducted for all of

the data found across the two sites in order to determine if the elemental compositions

follow the expected correlations and where the elements found in traffic based partic-

ulate emissions form observable correlations. The main correlation which appears in

both sites is between aluminium and silicon, which are commonly used in automo-

tive alloys such as Silumin and Alusil in high-wear applications in pistons, and in the

linings in cylinders and engine blocks [41]. The other main correlation is between sul-

phur and lead which are constituents of emission from diesel and petrol engines. The

other heavy metal correlations are a bi-product of being such small compositions of the

overall mixture which will likely cause them to move in the same direction together

when one of the other larger components changes.

The SEM analysis also gives information on particle sizes and their morphology
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(a) (b)

Figure 2.5: Correlation Matrix for the measured elemental compositions from the differ-

ent sites, (a) Kensington Gore, (b) Christ Church

in terms of aspect ratio and surface roughness. The average particle size of the two

longest dimensions was used to convert the SEM particle sizes into the PSDs of all

the particles within a sample with the same bin limits as the Airspeck devices (See

Appendix A for bin ranges). This allowed a direct comparison of the PSDs between

the two measurement source as shown in Figure 2.6 and Figure 2.7. It was observed

that the PSDs between the two measurements are significantly different. The SEM

measurements only considers particles of size greater than 1.5µm with some particles

falling into bin 5; particles of sizes below 95 pixels in the SEM imaging software were

removed due to the low signal-to-noise ratio making their identification difficult. The

Kensington Gore site PSD is more heavily biased towards finer particles than the Christ

Church site data. In comparison the Airspeck-S particle size measurements are much

smaller with the majority of the distribution in smaller particle size range.

The final source of data considered was from an application written to scrape traffic

data using the ’HERE’ traffic API [1], and parsed at 5-minute interval (to align with

the frequency of the Airspeck-S data collection). Two features of interest are: the jam

factor - a value between zero (free-flowing) and ten (standstill) giving a relative level

of traffic on that road; and, the average speed of traffic in Km/hr.
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Figure 2.6: PSD for the SEM data

Figure 2.7: PSD for the Airspeck-S data

2.3 Machine Learning Methods

2.3.1 Supervised Machine Learning Methods

A number of supervised classification algorithms are used in this work in order to pre-

dict a label from a set of labels that the classifier is trained against. Both the source

apportionment and indoor/outdoor classifiers use these algorithms. Logistic regression

is a binary classification which uses linear combinations between learnt weights and

input features in conjunction with a sigmoid function in order to form a probability dis-

tribution used to determine the class. The multiclass version is sometimes also called

softmax regression and uses the softmax function to form the probability distribution
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across the classes. Naive Bayes classifiers are also used in this work due to their need

for only small amounts of training data and their speed. Naive Bayes use the assump-

tion of conditional independence between features and the associated class variable

in order to estimate the probability of a class given an associated feature vector. The

k-Nearest Neighbours (kNN) algorithm is a non parametric method whereby a sample

is classified by the most common class from it’s k nearest neighbours. These meth-

ods are useful algorithms to try in order to ascertain a baseline level of performance

of a classifier, especially methods like k-Nearest neighbours which do not require any

parameterisation.

Other more complex and powerful classification algorithms are also tested for use

in both source apportionment and indoor/outdoor classification. Methods such as ran-

dom forest, Support Vector Machines (SVM) and Artificial Neural Networks (ANN)

are all used. Random forests use an ensemble of n decision trees with the highest num-

ber of a given class from all of the trees forming the final class. Random forests work

on on the principle that as the number of individual uncorrelated trees increases the

error will be reduced. For this reason random forests are a very powerful classifica-

tion algorithm which can produce strong results and are less likely to over-fit the data

than other methods. The SVM model attempts to classify the data by fitting a decision

boundary with the maximum margin between classes. It is also powerful as it can be

used with different kernels allowing for both linear and non-linear classification. In

this work the linear kernel is used for linear classification while the RBF kernel is used

for non-linear classification. The regularisation constant C inversely affects the mount

of regularisation applied to prevent overfitting. Finally ANN’s are a very powerful and

popular type of model. ANN’s consist of a number of layers (L), with each layer con-

sisting of a number of affine transformations with non linear activation functions (U).

This work uses the common ReLU non-linear activation function due to it’s robustness

to the vanishing gradient problem which are often encountered with other activation

functions such as the tanh and sigmoid functions. This structure allows for very flex-

ible models with the capacity to fit incredibly complex functions which can lead to

problems with the models overfitting to the data. In order to stop overfitting an early

stopping approach is used, where once the loss on an independent validation data set

starts to increase during the training then training is terminated.

Linear regression is used to regress the airborne PSD to the measured elemental

composition distribution of the particle deposited on leaf samples. Linear regression

uses a linear combination between input features and a learned weight matrix in order
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to predict a single or set of continuous output variables. Although linear regression is

by its nature a linear method the data can be transformed using methods such as RBF’s

in order to allow for fitting of non-linear data. In this work RBF’s are used by centering

an RBF over each data point and the weights are penalised to stop overfitting by using

L2 regularisation (also known as ridge regression).

2.3.2 Semi-Supervised Machine Learning Methods

Unlike supervised learning techniques, semi-supervised machine learning methods are

typically able to learn from un-labelled data in order to improve the overall perfor-

mance system and to adapt to new situations. In this work an adaption of the co-

training [8] algorithm is used for indoor/outdoors detection based on the recent work

by Radu et al. [36] which showed the application of this algorithm to indoor/outdoor

detection of mobile phones.

Figure 2.8: Flow diagram showing the co-training algorithm

The flow diagram for the co-training algorithm can be seen in Figure 2.8. It uses

two classifiers which are trained on a labelled data set with conditionally independent

feature sets being used for each classifier. In this case the classifiers learn to classify

the label with different views on the data. As new unlabelled data is collected both

of the classifiers within the co-training algorithm are used to predict the class label.

The label that is assigned is given by the classifier with the highest confidence for a

prediction. A fraction of the initial labelled training set with the lowest confidence

is then replaced with the newly labelled data with the highest confidence and both

classifiers are retrained periodically. This enables the co-training algorithm to learn

and adapt to new environments. Importantly though for this to work, both classifiers

need to be able to make accurate predictions from the features available to them.
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Methodology

3.1 Data Preparation

The data used in this project was split into training, validation and test sets as described

in the specific methodology sections with the training set being used to train the mod-

els, the validation set being used for hyper-parameter tuning and the test set being used

to test the final generalisation performance of the final model. In each case it was nec-

essary to apply a number of transformations to the data as described in the following

sections.

3.1.1 Bin Count Normalisation

The Airspeck-P measures the counts of particles within an equivalent diameter range

over the measurement period resulting in sixteen bins of particle counts (see Appendix

A for exact particle size ranges). The values in the sixteen bins were normalised by

dividing the counts in each bin (ck) by the total counts across all the bins using Equation

3.1 in order to remove measurement effect such as distance. This forms the PSD. It is

hypothesised that each major pollution source will have a unique PSD.

pk =
ck

∑
B
b=1 cb

(3.1)

3.1.2 Outlier Detection and Removal

Outliers were detected and removed from the training set using Tukey’s Fences (k=1.5)

as seen in Equation 3.2. The Tukey’s Fences outlier method is applied to the required

14
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feature independently for each pollution source. During the deployment of the classi-

fier the pollution source will not be known and therefore outlier detection cannot be

used as detailed here. Therefore outlier removal is only applied to any training data in

order to remove any measurement artefacts before training any models.

[Q1− k(Q3−Q1),Q3 + k(Q3−Q1)] (3.2)

3.1.3 Median Filter

A median filter is used to smooth the data and to remove noise. An eleven point

sliding window is used for each feature. A median filter replaces the the window with

the median value from the values within the window.

3.1.4 Feature Engineering

Two further features are required for this work. The first is the euclidean distance

which is calculate from the change in longitude (plongitude
x ) and latitude (platitude

x ) of

each measurement (Equation 3.3), and the second is the standard deviation of the eu-

clidean distance using a ten point sliding window. Any measurement included in the

buffer before the window is filled with a NaN value, meaning it will be removed from

the data set.

d(p1, p2) =

√
(plongitude

1 − platitude
1 )2 +(plongitude

2 − platitude
2 )2 (3.3)

3.2 Multi-source Apportionment

3.2.1 Data Pre-Processing

Any data points with data with missing or null values in the bin values were are re-

moved as well as any outliers are removed from the data set using Tukeys’ Fences

(Section 3.1.2). The data was then filtered using a median filter as specified in Section

3.1.3 to smooth the data. Finally, the count data was normalised to a probability dis-

tribution as specified by Section 3.1.1. It is important that the normalisation process is

applied last in order to avoid invalid probability distributions, i.e where the cumulative

area is not equal to unity.
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3.2.2 Data Generation and Augmentation

One of the novel contributions of this work is investigating how augmenting the indi-

vidual pollution source data and generating new data sets which consist of mixtures

of the individual components can improve both the accuracy and the robustness of the

source apportionment system. Two assumptions have been made about the mixtures

formed. The first was that the maximum number of pollution sources in a mixture

would be three and the second was that there would be one dominant pollution source

which comprises of at least 50% of the overall mixture. Three main methods were

investigated:

3.2.2.1 Mixing Pollution Sources using Linear Combinations of the PSD

The first method for producing the PSDs of mixtures of pollution sources used linear

combinations of the individual pollution source PSDs. The pseudo code for how the

multi-source data was generated can be seen in Appendix D.

3.2.2.2 Mixing Pollution Sources using Linear Combinations of the Raw Count

Measurements

This method of generating a data set of mixed pollution source data uses linear com-

binations of the raw count values in the bins from the individual pollution source mea-

surements before normalisation to the PSD. This method doesn’t assume that each

individual pollution source will have an equal weighting towards the overall PSD. For

example, the measurements from the incense pollution source have orders of magni-

tude more particles in a given measurement than other pollution sources and there-

fore will dominate the probability distribution when mixed with other components.

This method could be more sensitive to the differences in how the measurements were

taken. The pseudo code used to generate this data set can be seen in Appendix D.

3.2.2.3 Modelling the Pollution Sources as Multivariate Gaussian Random Vari-

ables

The bins were normalised across all the particles resulting in a probability distribution

of the likelihood of a measured particle falling into one of the bins. The PSD for

each of the pollution sources was approximated using a MVG (MVG) distribution

(Equation 3.4) with both the mean and covariance calculated empirically from the pre-

processed data using Equation 3.5 and 3.6. This method assumes that the variability
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is centered evenly around the mean. In some cases there is some time based variation

which violates this assumption. It was not appropriate to model this variance as a

different type of distribution and it is assumed to be negligible to the overall measured

distributions.

fp(p1, ..., pk) =
1√

(2π)k|Σ|
e(−

1
2 (p−p̄)T Σ−1(p−p̄)) (3.4)

p̄ =
1
N

N

∑
n=1

p(n) (3.5)

cov(pi, p j) =
1
N

N

∑
n=1

(p(n)i − p̄i)(p(n)j − p̄ j) (3.6)

In order to form the mixture, it was assumed that the PSD of a mixture made of N

independent single pollution sources is another MVG distribution consisting of linear

combinations of the individual distributions in the mixtures. This method provides a

simple method for approximating mixed distributions and has the main advantage that

if the data can accurately be represented by a random variable with a small number

of fully descriptive parameters then storing large amounts of data is not required. The

pseudo code used to generate this data set can be seen in Appendix D.

Examples of the single source data distributions for both cigarette smoke and traffic

can be seen in Figure 3.1 by randomly sampling 10,000 data points from the distribu-

tion. These pollution sources demonstrate both examples where the MVG gives a good

representation of the measured data with smoking and then a poor representation with

traffic pollution.

3.3 Indoor/Outdoor Classification

3.3.1 Data Pre-Processing

Firstly, the euclidean distance and euclidean distance variability features were calcu-

lated as described in Section 3.1.4. All data points with missing or null values in

the required features were removed. The count data was normalised to a probability

distribution as specified by Section 3.1.1 and any other features which were required

to be scaled to zero mean and unit variance were also scaled at this step (based on

the training data). This included the total particle counts across all bins, temperature,
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(a) Smoking Measurements (b) Smoking MVG Random Variable

(c) Traffic Measurements (d) Traffic MVG Random Variable

Figure 3.1: Box plots showing the individual pollution source measurement and MVG

random variable PSDs

relative humidity, GPS Accuracy, euclidean distance and euclidean distance standard

deviation.
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Experiments and Evaluation Metrics

Experiments were conducted to test the various pollution source classifiers proposed

in this work. Details of the experiments are given in the following sections. There

are a number of experimental parameters which are common to all the experiments.

Experiments were repeated five times with a different random seed. The random seed

for each repeat in every experiment were 10, 100, 1000, 10000 and 100000. The

random seed is used to determine the data which is split into the training and validation

data set as well as the initial states of the model if applicable (test data is segmented in

the same way each time to prevent leakage into the training and validation data sets).

The experimental results reported are the average of the five results with standard error

calculated using Equation 4.1.

σ
−
x =

σ√
N

(4.1)

4.1 Indoor/Outdoor Classification Experiments

Due to the semi-supervised classification algorithm that were tested as part of this

work the data was split into labelled and an unlabelled data sets (Section 3.3) based on

whole data sets. In these experiments, the generalisation performance of the classifiers

are evaluated by calculating the F1 score (Section 4.3.1) from both the labelled valida-

tion data set and the unlabelled validation data set. The performance of the classifiers

against the labelled validation data set gives information about how the classifiers gen-

eralise to unseen data from the same environment that the classifier was trained against.

The performance of the classifiers against the unlabelled validation data set gives in-

formation on how the classifiers will generalise against unseen data from different

19
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environments. For all experiments in this section the data was pre-processed using the

methodology described in Section 3.3.

4.1.1 Baseline Experiments

Baseline experiments were conducted in order to understand how standard classifi-

cation algorithms would perform at indoor and outdoor classification. The baseline

classifiers tested were logistic regression, SVM with RBF kernel, Random Forest and

Naive Bayes classifiers.

4.1.2 Feature Importance Experiments

The co-training method described in Section 2.3.2 requires multiple classifiers trained

on independent feature sets. The aim of these experiments was to evaluate the suitabil-

ity of different classifiers which have been trained on independent subsets of features.

Previous work [8][36] has shown the classifiers have to be trained using feature sets

which are conditionally independent. There are certain sets of features which are not

conditionally independent which are shown in Table 4.1. The features must be kept

as subsets when splitting the features and therefore cannot be split across the different

classifiers.

Feature Set Dependent Features

1 Temperature, Relative Humidity

2 px, Total Particle Counts

3 GPS Accuracy, GPS Euclidean Distance,

GPS Euclidean Distance Std.

Table 4.1: Table showing the conditionally dependent features

Experiments were conducted to determine the feature set split which gives the best

two classifier performance on the labelled validation data. The experimental matrix

can be seen in Table 4.2. Note that in each case, a hyperparameter search had been

conducted in order to find the best performing classifier for each feature set.
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Classifier 1 Classifier 2 Classifier 3 Classifier 4 Classifier 5

Temperature,

Relative

Humidity,

px,

Total particle

counts

px,

Total particle

counts

GPS Accuracy,

GPS Euclidean

Distance,

GPS Euclidean

Distance

Std.

Temperature,

Relative

Humidity,

GPS Accuracy,

GPS Euclidean

Distance,

GPS Euclidean

Distance

Std.

GPS Accuracy,

GPS Euclidean

Distance,

GPS Euclidean

Distance

Std.,

px

Table 4.2: Table showing the feature sets tested for the different classifiers

4.1.3 Semi-Supervised Learning Experiments

Finally, the semi-supervised method is assessed to evaluate whether it is possible to

use unlabelled data to improve indoor/outdoor classification performance in new en-

vironments. The co-training algorithm as defined in Section 2.3.2 was used. There

are two additional hyperparameters which can be tuned in addition to those from the

individual classifiers. The first is the number of samples which are collected before

the classifiers are retrained (nretrain). The larger nretrain, the more diverse the data that

will likely be collected. The second is the proportion of the new unlabelled data which

has been labelled with the predictions from the classifiers which is incorporated into

the stored labelled data set within the co-training algorithm (n f rac). The higher the

proportion of samples incorporated into the labelled data set the quicker the algorithm

will learn and adapt. However, it can also include predictions which may be of low

confidence causing a degradation in classification performance over time.

A grid search was conducted using values of nretrain = 50,100,200,500 and n f rac =

0.01,0.05,0.1. The best performing model was chosen as the model with the highest

average F1 score on the unlabelled validation set. Finally, the performance of the co-

training system was evaluated against the previously unseen test set.
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Classification Algorithm Hyperparameters

Random Class -

k-Nearest Neighbours k = 1, 3, 5, 7, 9, 11

Logistic Regression -

Naive Bayes -

Support Vector Machine
kernel=linear, RBF

C=10, 100, 250, 500, 1000, 2500, 10000, 50000, 100000

Random Forest n = 1, 3, 5, 7, 9, 11, 15, 21, 31, 51

Neural Network

No. layers (L) = 1, 2, 3

No Hidden Units (U) = 50, 100, 250, 500

Learning Rate = 0.001

Activation = ReLU

Optimiser = ADAM

Table 4.3: Classifiers with hyperparameters used for source apportionment

4.2 Source Apportionment Experiments

4.2.1 Classification Algorithms

For each data set a kNN baseline classifier was used, which compared the similarity

of the measurement to be classified against the training set. This was then compared

against the more complex model based approaches against. Further classification al-

gorithms were then trained using each of the training data sets as specified in Sections

3.2.2.1. The classification algorithms tested, with hyperparameter ranges are shown in

Table 4.3.

4.2.2 Training Data Sets

Each of the classifiers were then fitted on the different data sets available to train the

source apportionment classifiers. The details of the data sets used can be seen in Table

4.4. In each case the classification algorithms were trained on the specified data set and

then assessed against the validation data sets for the measured individual and multi-

pollution sources. The best hyperparameters for each of the classification algorithms

were selected using the highest F1 score on the measured individual pollution source

data set. The aim of these experiments is to assess if training the classifiers using
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the data sets consisting of mixtures of pollution sources can improve the classification

performance against both the individual and mixed measure pollution source data.

4.3 Evaluation Metrics

4.3.1 Precision, Recall and F1 Score

The precision is the ratio of correctly classified examples to total true classified exam-

ples (Equation 4.2). This is the fraction of true predicted positive examples to total

predicted positive examples.

Precision =
true positives

true positives+ f alse positives
(4.2)

The recall is the ratio of the examples that are successfully predicted (Equation

4.3) and can be described as the number of true positive examples to total positive

examples.

Recall =
true positives

true positives+ true negatives
(4.3)

The F1 score is the harmonic mean between the recall and the precision (Equation

4.4). F1 score is less sensitive to class imbalance than the accuracy [40] and is therefore

used in this work to assess classification performance when the classes are imbalanced.

F1 score as described here is used for binary classification tasks. When multisource

classification is conducted in this work, the F1 score is calculated by micro-averaging

the F1 scores for each class. In this case the averaging is biased by the class frequency

and therefore is not sensitive to class imbalances. In the case of the measured binary

multisource data, the F1 score is calculated based on the number of correctly classified

instances if the predicted class is either of the main pollution sources.

F1 = 2 · precision · recall
precision+ recall

(4.4)

4.3.2 Confusion Matrix

A confusion matrix is used to assess the performance of the classification methods

used in this work. Each column in the matrix represents the predicted class with the

rows representing the actual class and each cell represents the precision as described

in 4.3.1.
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Data Set
No.

Data Set Name Description

1

Individual

Source

(Measured)

Data set consisting of PSD measurements

from individual pollution sources Section 2.2.1

2

Individual

Source

(MVG)

Data set consisting of PSDs sampled from

the MVG random variables used to approximate

the individual pollution source measurements

Section 3.2.2.3

3

Mixed Source

(Linear

combinations

of PSDs)

Data set consisting of linear combinations of PSD

measurements from individual pollution sources

Section 3.2.2.1

4

Mixed Source

(Linear

combination

of Counts)

Data set consisting of PSDs from linear

combinations of bin count measurements

from individual pollution sources Section 3.2.2.2

5

Mixed Source

(Linear

combination

of MVG’s)

Data set consisting of samples from random variables

of linear combinations of individual pollution source

random variables measurements from individual

pollution sources Section 3.2.2.3

6
Mixed Source

(Measured)

Data set consisting of PSD measurements

from multiple pollution sources Section 2.2.1

Table 4.4: Data sets used to train and validate the source apportionment classifiers



Chapter 5

Results and Discussion

5.1 Indoor/Outdoor Classification

5.1.1 Baseline Experimental Results

Baseline experiments were initially conducted in order to confirm that it was possible

to accurately classify whether the Airspeck-P was indoors or outdoors from the avail-

able measured micro-environments. The results can be seen in Figure 5.1 as described

in Section 4.1.1. All the classifiers gave a near perfect F1 score on the labelled val-

idation data set using all the available features as the distributions of the data within

the labelled data is from very limited environments and therefore generalisation per-

formance is very strong. It can be seen that the generalisation performance against the

unlabelled data which is from different environments is worse in all cases. These base-

line results indicate that classification of whether the Airspeck-P is indoor or outdoors

using the different measurements is feasible.

5.1.2 Feature Importance Experiments Results

The experiments as described in 4.1.2 were conducted and the results can be seen in

Figure 5.2. It can be seen that the random forest models and the SVM’s perform con-

sistently better across all of the feature sets on the labelled validation data set (Figure

5.2). It can also be seen that the strongest features for classification was the particle

information with the temperature and relative humidity and the GPS features with the

temperature and humidity. As the two classifiers required for the co-training algorithm

can’t use the same features, the best feature sets to give the best overall performance

for both classifiers is given in Table 5.1 with both models being random forests.

25
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Figure 5.1: Baseline results of the indoor outdoor classifiers on the labelled and unla-

belled validation data

(a) (b)

Figure 5.2: F1 scores for the classifiers trained with the different feature sets as detailed

in Table 4.2 against (a) the labelled validation data, (b) the unlabelled validation data

The co-training algorithm requires that both classifiers should be able to correctly

predict the class label with a high enough confidence that they are correct in the ma-

jority of cases. It is also important that the different classifiers make different classifi-

cation mistakes so when one of the classifiers is wrong and gives a prediction with a

low confidence, this can be corrected by the other classifier with a higher confidence.
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Classifier 1 Classifier 2

px,

Total particle counts

GPS Accuracy, GPS Euclidean Distance,

GPS Euclidean Distance Std.,

Temperature, Relative Humidity

Table 5.1: Table showing the best feature sets tested for the two classifiers with condi-

tionally independent features to be used with the co-training algorithm

Although there is no F1 score and feature set which will guarantee this in this case, it

is hoped that with the features selected here which will predict the label based on very

different information that this will be the case.

5.1.3 Co-Training Indoor/Outdoor Classification Results

The co-training algorithm as described in Section 2.3.2 was then optimised by conduct-

ing the hyperparameter tuning experiments outlined in Section 4.1.3. The algorithm

was shown data sequentially from different environments and the classifiers were re-

trained periodically based on nretrain.

The best performing model with an nretrain = 100 and n f rac = 0.1 can be seen

in Figure 5.3. If the co-training algorithm has indeed learned useful representations

from the unlabelled data, then it would be expected that the generalisation performance

would increase as the classifiers are retrained on the data from the new environments.

The first observation is that using ensembling of the two models to choose the label

with the highest confidence increases the overall classification performance signifi-

cantly over either of the individual classification algorithms. The primary reason for

this is that as both classifiers are trained using independent feature sets, the classifiers

typically make mistakes on different examples.

Secondly, it is possible to observe that initially the classifier trained on the par-

ticle size information has a lower F1 score overall than the classifier using the GPS

information and temperature/relative humidity. As training progresses the classifier

performance increases steadily over all the unlabelled training examples, increasing

the overall classification performance and the performance of each of the individual

classifiers. At the end of training the classification performance is an F1 score of

above 0.95 which is much higher than the performance of the baseline classifiers on

the unlabelled validation data set (F1 score of 0.88).
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Figure 5.3: Performance of the Co-training algorithm on the unlabelled validation data

set with nretrain = 100 and n f rac = 0.1

One of the important factors in making sure the co-training algorithm works ro-

bustly when learning from un-labelled data is that both classification algorithms can

accurately predict the class in all environments. When completing this work it was

found that there was one data set which contained a micro environment in which nei-

ther classifier could accurately predict the label. In this case the labelled data set will

become corrupted with data with incorrect labels as it is updated and this will degrade

performance. This can be seen in Figure 5.4 where the overall classification perfor-

mance drops after around 1000 unlabelled samples. Interestingly, the performance of

the two underlying classifiers continues to improve but the overall performance does

not. The reason for this is not know, however if the classifiers start to make confident

mistakes on the same examples, then this may cause an overall decrease in perfor-

mance. It would be expected that the system could potentially recover in time. Even

in this case the final classification performance was still greater than the baseline.

The indoor/outdoor classifier presented here has shown to be able to learn in the

Edinburgh micro environment from unlabelled examples. The best model was tested

against the held out unlabelled test data and it achieved an F1 score of 0.949 indicating

that the model generalises well. It is important to note that initial classifiers are still

trained on a limited amount of data from a limited number of micro environments. In

order to robustly deploy this type of classifier it would be necessary to train the initial

classifiers on data collected in different seasons, households and times of day, which

would reduce the risk of newly encountered environments being detrimental to overall

classification performance.
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Figure 5.4: Performance of the Co-training algorithm on the unlabelled validation data

set with nretrain = 100 and n f rac = 0.1 when data is present that neither classifier can

label accurately

5.2 Source Apportionment

5.2.1 Models Trained on the Individual Pollution Source Data

Baseline experiments were completed as detailed in Section 4.2.1. The kNN baseline

method doesn’t use learnable parameters in order to fit models instead it is based on the

similarity of a data point to the training data. The importance of these simple baseline

methods is to understand whether the more complex and computationally intensive

methods tested later bring any additional benefits. The results for these baseline meth-

ods can be seen in Table 5.2. The baselines are fitted only against the single source

measured data set and validated using the validation data from this data set and the

measured binary pollution source data set.

Baseline
Algorithm

Single Source
Measured

Binary Multi-Source
Measured

K-Nearest Neighbour (k=1) 0.814+/-0.024 0.791+/-0.006

Table 5.2: Baseline Classifier F1 Scores

Unsurprisingly the models which are based on randomly choosing a class give very

poor results. The K-Nearest Neighbours methods give very strong results on the data

set that it is trained on, giving a good F1 score for both the single source and multi

source measured data. The confusion matrix can be seen in Figure 5.6a. There are
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two main types of error. The first is the smoking class which primarily has errors by

incorrectly predicting the background class. In reality, there will be some smoking data

where the samples will not be recording smoking as the cigarette source is not near to

the detector. However, there is no way to validate this. The other type of error that the

classifier typically makes is where the PSDs of the classes overlap significantly and are

relatively similar. For example, by examining the PSDs shown in Section 2.2.1, it can

be seen that the background and boiling have similar PSDs as do the deep frying and

traffic.

The experimental results from training on the individual pollution source data can

be seen in Figure 5.5. The results indicate the performance of using a classifier to be

able to predict the pollution source from the PSD when trained using the measured

particle size data. The F1 scores from the validation set shows that all the classifiers

tested can generalise well to new data. The classifiers in this section have all had

relevant hyper-parameters tuned using a grid search methodology. The results show

that none of the linear classification methods can classify the pollution source accu-

rately with lower F1 score than the other non-linear classification algorithms. The best

performing model was the SVM with RBF kernel. This performed well on both the

individual and multiple pollution source data sets. However, when identifying the in-

dividual pollution sources the baseline kNN algorithm gives a higher F1 score than

any of the other models. This is not surprising as the K-nearest neighbours algorithm

designates the class based on the similarity of the measurements to the classes in the

training data. Importantly though the kNN algorithm does not generalise as well to the

measured multi source data, giving a lower F1 score than some of the other algorithms.

The confusion matrix for the best performing model can be seen in Figure 5.6b.

From the confusion matrix it can be seen that the model makes mistakes between the

classes which again have similar PSDs as shown in Section 2.2.1. These are typically

from similar pollution source classes, for example, from boiling water and the back-

ground, as well as the mosquito coil and deep frying.

The second set of experiments investigated the feasibility of training the classi-

fication algorithms using the data sampled from the MVG random variables which

approximate the measured PSDs. The results from training the different classification

algorithms can be seen in Figure 5.5b. It is observable that there is a degradation in

performance in all of the classifiers when validating against the measured particle size

data as opposed to the generated validation data. The SVM using the RBF Kernel gives

the highest F1 score on the individual pollution sources while the kNN (k=1) and the



Chapter 5. Results and Discussion 31

(a) (b)

Figure 5.5: F1 scores for the models trained on the individual pollution source data (a)

Measured Data, (b) MVG Random Variables

SVM with RBF kernel both perform best on the measured multiple pollution source

data, but this is still worse than the results shown in Figure 5.5a where the classifiers

were trained on the raw measurements.

The degradation in performance was due to the MVG random variables which are

fitted using the measured mean and covariance not representing the distribution of the

data exactly. Although the variability of the measurements were expected to be random

and Gaussian around the mean, in reality they are not. There is time-based variability

in the data which is not fully captured by the distribution fitted to the data.

5.2.2 Multi-source Apportionment Experimental Results

Three methods were assessed to produce a robust classification system which can be

used to determine the dominant pollution source from a set of known pollution sources.

The aim of mixing the pollution source measurements was to produce more robust de-

cision boundaries when multiple pollution sources are present in the measured samples

than the decision boundaries which are formed when individual pollution source mea-

surements are used.

The first method investigated training the classifiers on the the mixed multi pollu-

tion source data which was created by taking linear combinations of the PSDs from the

individual pollution sources. The summary of the results from the different classifica-

tion algorithms can be seen in Figure 5.7. Overall, the performance of the classifiers
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(a) (b)

Figure 5.6: Confusion matrices showing (a) The kNN (k=1) baseline model and (b)

the SVM with RBF kernel and regularisation constant c=100000 both trained on the

measured individual pollution source data.

against the measured individual pollution source data set increased. This was espe-

cially true for the ANN model which produced the best validation results against this

data set and unlike when trained on the individual pollution source measurements beat

the kNN classifier on both the validation data sets. This model also increased the F1

score compared with the ANN trained only on the individual pollution source mea-

surements (Figure 5.5). ANN can form very complex decision boundaries due to the

flexibility of the models, which can lead to over fitting. Even though early stopping

was used in order to stop the ANN overfitting the data this could still be occurring.

Taking linear combinations of the PSD measurements from the individual pollution

source data will have a regularising effect on the classifier as there will be more data

structure around where the decision boundaries will be formed.

The second method investigated the use of multi-source data which was mixed

through taking linear combinations of the raw bin count measurements from the in-

dividual pollution sources before normalising to the PSD. This mixed data set was

created in this way in order to account for the different total number of particles in

the different pollution sources. However, this may also introduce sensitivities in the

classification of the pollution source based on how far the measurement device is from

the pollution source. The summary of the results from the different classification algo-

rithms can be seen in Figure 5.7. A similar trend as the previously discussed method of

mixing the pollution sources is observed with a general improvement of the F1 score

against the individual measured pollution source data set. However, overall the per-

formance of the classifiers trained against this data set is marginally worse than when
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(a) (b)

Figure 5.7: F1 scores for the models trained on the mixed pollution source data vali-

dated against (a) Individual measured pollution source data, (b) multi-source measured

data

simply using the linear combinations of the individual PSDs. Again the ANN was the

best performing classifier and the only model to outperform the kNN baseline.

The last method discussed here used the data sampled from the mixed MVG Ran-

dom Variables as described in Section 3.2.2.3. The results can be seen in Figure 5.7.

The performance on the individual measured validation data was poor with low F1

scores from all of the algorithms including the kNN and ANN models which have

previously all performed well. This indicates that the assumption of approximating

the mixed pollution source distributions as MVG random variables is not valid. One

very interesting point though is the performance against the measured multi-pollution

source data is actually superior with an increase in F1 score. This is an artefact of

the classifiers having a very high accuracy at correctly labelling the coil and incense

pollution source which are two of the pollution sources which are present in most of

the multiple pollution source validation set.

This section has shown that mixing the pollution source gives a more robust clas-

sification performance against the multi-source pollution data than when the classifier

is trained solely against the individual source data. The confusion matrix for the best

model can be seen in Figure 5.8 where it can be observed that the model has improved

performance in nearly all classes except for smoking where performance is still rela-

tively poor. It is worth noting however that the classifier trained using only the individ-
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Figure 5.8: Confusion matrix demonstrating the best performing model ANN L=3,

U=500 trained on the multi source data generated using linear combinations of the

individual PSDs, validated on the measure individual pollution source validation data

set

ual pollution sources still performs well and with enough training data could produce

robust decision boundaries which could robustly deal with multi source pollution data.

5.2.3 A Hybrid Source Apportionment Classifier

The indoor and outdoor micro-environments are characterised by dominant pollution

sources: for example, at certain times of the day cooking sources dominate indoor air

pollution; similarly, traffic-related pollution sources will dominate around busy traffic

junctions. This observation is used to improve the source apportionment classifiers

developed in Section 5.2.1 and 5.2.2, by adding an indoor/outdoor label – the output

of the indoor/outdoor classifier was added to the features during training using the

classification system developed in Section 4.2.2 (in a minority of cases this had to

done manually as the data was gathered with a previous generation of Airspeck device

which did not have the necessary features). The indoor-outdoor label enhanced data

set was then used to train the source apportionment classifiers in Sections 5.2.1 and

5.2.2. Note that these results are not directly comparable; therefore, the hybrid model

and the classifiers in Sections 5.2.1 and 5.2.2 were trained on the same data set, with

and without the indoor-outdoor labels, using the same model architectures and hyper-

parameters as used previously to see if the hybrid system yielded benefits.

The results of the hybrid source apportionment model on the individual pollution
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(a) (b)

Figure 5.9: F1 scores for the models trained on the individual pollution source data val-

idated against (a) Individual measured pollution source data, (b) multisource measured

data

source measurement can be seen in Figure 5.9a and on the multi-pollution source data

in Figure 5.9b. The hybrid classifier out performs the standard classifier in all cases.

Including the indoor/outdoor label adds another degree of freedom to the model and

forms a decision boundary when the PSDs of the individual pollution sources were not

separable.

5.2.4 Testing the Source Apportionment System

The source apportionment systems were tested on a held-out data set not used in any of

the training or validation processes. It was also tested on a subset of the Dublin data set

previously used by Sanatani [38] which is a data set consisting of 900 measurements

specifically labelled for the presence of cigarette smoke.

The results can be seen in Table 5.3 for the best standard (ANN, L=3 and U=500)

and hybrid (ANN, L=3 and U=500) models. The models perform well against the held

out test set which is a subset of the data that the source apportionment system was

trained against with F1 scores which were similar to the F1 scores from the validation

data sets indicating that over-fitting has not occurred. The F1 scores against the Dublin

test set, however, are significantly lower. This is probably due to a number of reasons:

firstly, the Airspeck device used was a previous model with different characteristics

compared to the current version of the Airspeck devices on which the models were
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Data Set

Standard Model
(ANN, L=3 and U=500)

Trained on the
Mixed PSD Data

Hybrid model
(ANN L=3, U=500)

Trained on the
Mixed Count Data

Test Data 0.826 0.862

Dublin Data 0.191 0.211

Table 5.3: F1 score of the best performing source apportionment models against the

Held out test sets

trained; and, secondly, the Dublin data was collected from shelters outside pubs and

cannot be accurately classified as either fully indoors or outdoors. This to some extent

explains why there is no improvement when using the hybrid source apportionment

model as it is unable to distinguish between cigarette smoke and other indoor/outdoor

pollutants with similar PSDs. If the labels are manually adjusted to be outside (as is

the correct label) the F1 score of the hybrid system increases to 0.884 indicating how

import the classification of the indoor/outdoor label could be with this hybrid system.

5.3 Monitoring Air Quality During the Easing of COVID-

19 Lock-down Restrictions in London

A network of four Airspeck-S monitors were mounted on lamp posts in the Royal Bor-

ough of Kensington and Chelsea to monitor at 5-minute intervals the concentrations of

airborne particulates (PM), nitrogen dioxide and ozone. Figure 5.10 shows the cumu-

lative PM for Sensor 905801CA0E1F1D11, with data from the other sensors shown in

Appendix E (exact locations of the sensors can be seen in Appendix E). It was expected

that as the economic activity ramped up after the lock-down, that the air quality would

worsen with an increase in the different PM fractions associated with vehicular traffic.

Although the monitoring period has not been sufficiently long to discern major trends

as yet, some significant spikes can be observed. For example, during the long weekend

in May starting in the afternoon of Friday 22 May, and, reduction during the week

commencing 13th July, 2020 when the schools in the area closed for summer vacation.

There was also large increases in PM1 and PM2.5 for some of the sensors. Traffic data

was also collected, as described in Section 2.2.3 using the HERE traffic API. Figure

5.11a illustrates an example of its time-series output for sensor 905801CA0E1F1D11
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aligned with the raw PM data (other sensor data is included in Appendix E). The traf-

fic data shows increases in the jam factor (which is a proxy for the quantity of traffic)

along this road which could account for the rise in PM. Finally, the nitrogen dioxide

gas concentrations Figure 5.11b show a similar trend to the PM values as they are both

derived mainly from vehicular traffic [39] and the concentrations of ozone, a secondary

pollutant of traffic, which is formed in the presence of sunlight and precursors such as

oxides of nitrogen and volatile organic compounds, increase when the temperature

rises.

Figure 5.10: Weekly cumulative PM1, PM2.5 and PM10 for Sensor

905801CA0E1F1D11

5.4 Prediction of the Elemental Composition from Air-

borne Particle Size Information

Regression methods were used to predict the elemental composition from the Airspeck-

S PSD measurements. Experiments were conducted which involved fitting both the

baseline and linear regression models with associated hyper-parameter searches. As

the data set was so small (six leaf samples) a leave-one-out cross validation approach

was used. The results of the regression can be seen in Table 5.4. Importantly it can be

seen that even the best results can only match the baseline method of simply making

the prediction using the average of the training elemental compositions. This indicates
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(a) (b)

Figure 5.11: (a) Time-series of the PM fractions and traffic data for sensor

905801CA0E1F1D11, (b) Airspeck-S measurements for all sensors

that there is no correlation between the measured airborne PSD and the composition.

Different time periods for assessing the PSD were chosen, however, this had no effect

on the performance of the models. In order to improve and assess the feasibility of the

project, it is recommend that more composition based samples are taken and assessed.

Model Average Validation RMSE (%)

Baseline (mean of training compositions) 4.920

Ridge Regression 4.923

Ridge Regression with RBF basis functions 4.920

Table 5.4: RMSE of the elemental composition prediction from the measured Airspeck-

S PSD



Chapter 6

Conclusions and Future Work

This work has shown how machine learning techniques can be used to develop under-

standing of airborne pollution. An indoor/outdoor classification system was developed

which could be trained on limited amounts of training data and then learn and improve

the classification performance from new unlabelled measurements. This was shown

to allow the system to learn and improve the overall classification system as it was

introduced to new and unseen micro-environments. It was also observed however that

if the system encountered a micro-environment which the system couldn’t accurately

classify, then this could have a detrimental impact on the overall system performance.

In reality though, the system was trained with less data than would normally be used in

order to show the adapted co-training algorithm could improve performance. In order

to deploy this system for real world use, the initial supervised classification algorithms

would be trained on all the available training data available which would increase the

robustness of the system to this type of problem.

An airborne pollution apportionment system was developed using classical clas-

sification techniques by training the models on data sets augmented by mixing mea-

surements of the individual pollution source PSDs through either directly mixing the

PSDs using linear combinations or through linear combinations of the particle counts

in each bin before normalisation to the PSD. Lastly, each of the individual pollution

source measurements was approximated as a MVG random variable and then mixed by

taking linear combinations of the random variable parameters. In general the models

which were trained on the data sets from the mixed and individual pollution sources

showed an increase in performance in comparison to the models trained only on the in-

dividual pollution source data. However, the technique for approximating the pollution

source as MVG random variables performed poorly. This was due to the distributions

39
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formed by mixing the random variables not being a good representation of the actual

data and therefore forcing the classifiers to learn decision boundaries that degraded per-

formance more than any of the other methods. A hybrid source apportionment system

which used the label from the indoor classifier as an additional feature was developed.

It was shown that in all cases the hybrid source apportionment model increased the per-

formance of the source apportionment system as the systems trained only on the PSD.

The only time this was not the case was during testing against the Dublin data sets

where performance was poor for both the standard and hybrid source apportionment

systems.

The classification architectures here have all treated the data as independent mea-

surements. The data however is of course a time series and therefore some form model

architecture which takes into account previous measurements would be worth inves-

tigating. However, current data sets are not suitable for this purpose as they are all

disjoint events in controlled conditions, instead labelled data sets with natural transi-

tions for different pollution sources in different micro environments would be needed,

although potentially difficult to obtain. Another potential avenue of interest would be

to use an approach for which the source apportionment system could learn from newly

measured data. As was seen when testing the system, measurements from unobserved

micro-environments may be very different to those that the initial classifier was trained

on. Having a system which can learn from newly taken unlabelled data could help im-

prove the performance and be a cost effective way to adapt to new micro-environments.

Finally machine learning methods were evaluated in order to predict the elemental

composition of road side particulate pollution on leaf samples from Airspeck-S air

quality measurements. It was found that with the limited number of samples available,

it was not possible to accurately predict the elemental composition any more accurately

than just taking the average of the training samples. In order to assess the feasibility

of this work further a large sample size needs to be investigated. If found that it is

possible to relate the Airspeck air quality measurements to the elemental composition

when more samples are available, then the next logical step is to attempt to predict the

toxicity to humans as some form of toxicity index [35] from the predicted elemental

compositions.
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Bin no. Particle Size Range (µm)

0 0.38-0.52

1 0.52-0.75

2 0.75-1.0

3 1.0-1.3

4 1.3-1.5

5 1.5-2.0

6 2.0-3.0

7 3.0-4.0

8 4.0-5.0

9 5.0-6.5

10 6.5-8.0

11 8.0-10.0

12 10.0-12.0

13 12.0-14.0

14 14.0-16.0

15 16.0-Max

Table A.1: Bin Value Ranges
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Indoor/Outdoor Classification
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Figure B.1: Isomap decomposition of the indoor/outdoor classification data set
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Classification Algorithm
Validation F1 Score

(labelled)
Validation F1 Score

(unlabelled)

Logistic Regression 0.998+/-0.001 0.873+/-0.004

SVM (RBF Kernel) (c=10000) 0.998+/-0.001 0.862+/-0.004

Random Forest (500) 0.999+/-0.000 0.880+/-0.005

Naive Bayes 0.977+/-0.005 0.866+/-0.008

Table B.1: Table showing the baseline classification results using all available features

Classification Algorithm
Validation F1 Score

(labelled)
Validation F1 Score

(unlabelled)

Logistic Regression 0.955+/-0.002 0.797+/-0.003

SVM (RBF Kernel) (c=1000) 0.999+/-0.000 0.799+/-0.008

Random Forest (n=100) 0.998+/-0.001 0.851+/-0.005

Naive Bayes 0.895+/-0.005 0.790+/-0.004

Table B.2: F1 score of the classifier trained with Feature set 1 from Table 5.1

Classification Algorithm
Validation F1 Score

(labelled)
Validation F1 Score

(unlabelled)

Logistic Regression 0.873+/-0.001 0.849+/-0.000

SVM (RBF Kernel) (c=10000) 0.986+/-0.001 0.826+/-0.004

Random Forest (n=100) 0.988+/-0.001 0.843+/-0.003

Naive Bayes 0.773+/-0.013 0.745+/-0.007

Table B.3: F1 score of the classifier trained with Feature set 2 from Table 5.1

Classification Algorithm
Validation F1 Score

(labelled)
Validation F1 Score

(unlabelled)

Logistic Regression 0.984+/-0.001 0.894+/-0.008

SVM (RBF Kernel) (c=10000) 0.985+/-0.001 0.924+/-0.010

Random Forest (n=10) 0.990+/-0.001 0.935+/-0.002

Naive Bayes 0.968+/-0.011 0.857+/-0.019

Table B.4: F1 score of the classifier trained with Feature set 3 from Table 5.1
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Classification Algorithm
Validation F1 Score

(labelled)
Validation F1 Score

(unlabelled)

Logistic Regression 0.997+/-0.001 0.860+/-0.003

SVM (RBF Kernel) (c=10) 0.999+/-0.001 0.847+/-0.003

Random Forest (n=500) 0.999+/-0.001 0.854+/-0.004

Naive Bayes 0.983+/-0.005 0.851+/-0.017

Table B.5: F1 score of the classifier trained with Feature set 4 from Table 5.1

Classification Algorithm
Validation F1 Score

(labelled)
Validation F1 Score

(unlabelled)

Logistic Regression 0.991+/-0.001 0.889+/-0.011

SVM (RBF Kernel) (c=100) 0.995+/-0.000 0.847+/-0.004

Random Forest (n=500) 0.997+/-0.000 0.873+/-0.005

Naive Bayes 0.963+/-0.008 0.852+/-0.004

Table B.6: F1 score of the classifier trained with Feature set 5 from Table 5.1
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Source Apportionment Data

Model

Individual
Pollution
Source

Measured

Multiple
Pollution
Source

Measured

K- Nearest Neighbour

(1 Nearest Neighbour)
0.814+/-0.011 0.791+/-0.003

Logistic Regression 0.554+/-0.009 0.864+/-0.004

Naive Bayes 0.631+/-0.008 0.760+/-0.028

Neural Network (L=3, U=500) 0.800+/-0.009 0.859+/-0.021

Random Forest (nest = 51) 0.769+/-0.006 0.833+/-0.009

Support Vector Machine

(Linear Kernel, c=2500)
0.779+/-0.006 0.815+/-0.023

Support Vector Machine

(RBF Kernel, c=100000)
0.803+/-0.005 0.878+/-0.009

Support Vector Machine

(Sigmoid, c=10)
0.225+/-0.009 0.426+/-0.042

Table C.1: Validation F1 scores for classifiers trained using the measured single source

data
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Model

Individual
Pollution
Source

Measured

Multiple
Pollution
Source

Measured

K- Nearest Neighbour

(5 Nearest Neighbour)
0.732+/-0.006 0.819+/-0.016

Logistic Regression 0.647+/-0.008 0.788+/-0.003

Naive Bayes 0.630+/-0.008 0.760+/-0.028

Neural Network (L=1, U=100) 0.767+/-0.009 0.849+/-0.015

Random Forest (nest=51) 0.739+/-0.006 0.811+/-0.016

Support Vector Machine

(Linear Kernel, c=2500)
0.775+/-0.005 0.775+/-0.012

Support Vector Machine

(RBF Kernel, c=100000)
0.791+/-0.024 0.823+/-0.024

Table C.2: Validation F1 scores for classifiers trained using the data set sampled from

the individual MVG random variables

Model

Individual
Pollution
Source
Measured

Multiple
Pollution
Source
Measured

K- Nearest Neighbour

(1 Nearest Neighbour)
0.814+/-0.011 0.791+/-0.003

Logistic Regression 0.632+/-0.008 0.803+/-0.004

Naive Bayes 0.630+/-0.009 0.762+/-0.029

Neural Network (L=3, U=500) 0.832+/-0.006 0.873+/-0.004

Random Forest (nest=51) 0.769+/-0.008 0.830+/-0.009

Support Vector Machine

(Linear Kernel, c=2500)
0.779+/-0.005 0.816+/-0.008

Support Vector Machine

(RBF Kernel, c=100000)
0.803+/-0.003 0.839+/-0.013

Table C.3: Validation F1 scores for classifiers trained from the Mixed PSD data
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Model

Individual
Pollution
Source
Measured

Multiple
Pollution
Source
Measured

K- Nearest Neighbour

(1 Nearest Neighbour)
0.814+/-0.011 0.791+/-0.002

Logistic Regression 0.633+/-0.009 0.804+/-0.004

Naive Bayes 0.631+/-0.008 0.763+/-0.028

Neural Network (L,=3, U=500) 0.825+/-0.003 0.852+/-0.014

Random Forest (nest=51) 0.773+/-0.012 0.816+/-0.017

Support Vector Machine

(Linear Kernel, c=2500)
0.780+/-0.006 0.814+/-0.008

Support Vector Machine

(RBF Kernel, c=100000)
0.798+/-0.002 0.836+/-0.014

Table C.4: Validation F1 scores for classifiers trained from the Mixed count data

Model

Individual
Pollution
Source
Measured

Multiple
Pollution
Source
Measured

K- Nearest Neighbour

(3 Nearest Neighbour)
0.565+/-0.006 0.731+/-0.007

Logistic Regression 0.538+/-0.004 0.746+/-0.003

Naive Bayes 0.555+/-0.013 0.859+/-0.008

Neural Network (L=1, U=250) 0.649+/-0.005 0.903+/-0.012

Random Forest (nest=31) 0.612+/-0.008 0.915+/-0.003

Support Vector Machine

(Linear Kernel,c =2500)
0.618+/-0.006 0.898+/-0.002

Support Vector Machine

(RBF Kernel, c=1000)
0.633+/-0.006 0.875+/-0.014

Table C.5: Validation F1 scores for classifiers trained from the Mixed MVG random

variables
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Model Bin Values Bin Values and IO

Data set used to train
classifers

Individual
PSD

Mixed
Count
Mixed

Individual
PSD

Mixed
Count
Mixed

kNN 0.791+/-0.004 0.791+/-0.005 0.791+/-0.004 0.854+/-0.003 0.854+/-0.004 0.854+/-0.004

Logistic Regression 0.557+/-0.010 0.677+/-0.006 0.675+/-0.006 0.729+/-0.007 0.786+/-0.004 0.786+/-0.004

Naive Bayes 0.589+/-0.008 0.591+/-0.008 0.589+/-0.008 0.700+/-0.010 0.698+/-0.010 0.698+/-0.008

Neural Network 0.799+/-0.007 0.816+/-0.006 0.814+/-0.006 0.851+/-0.003 0.854+/-0.004 0.858+/-0.005

Random Forest 0.806+/-0.005 0.808+/-0.007 0.805+/-0.006 0.836+/-0.006 0.846+/-0.002

Support Vector Machine

(Linear Kernel)
0.811+/-0.004 0.817+/-0.006 0.818+/-0.005 0.854+/-0.002 0.852+/-0.003 0.848+/-0.002

Support Vector Machine

(RBF kernel)
0.826+/-0.004 0.827+/-0.006 0.825+/-0.005 0.860+/-0.007 0.861+/-0.005 0.863+/-0.005

Table C.6: Validation results for the source apportionment hybrid models on measured

individual pollution source data

Model Bin Values Bin Values and IO

Data set used to train
classifers

Individual
PSD

Mixed
Count
Mixed

Individual
PSD

Mixed
Count
Mixed

kNN 0.743+/-0.008 0.745+/-0.009 0.743+/-0.008 0.784+/-0.002 0.784+/-0.002 0.784+/-0.002

Logistic Regression 0.799+/-0.003 0.798+/-0.004 0.801+/-0.005 0.853+/-0.002 0.860+/-0.003 0.861+/-0.003

Naive Bayes 0.673+/-0.009 0.676+/-0.010 0.678+/-0.009 0.777+/-0.010 0.777+/-0.011 0.778+/-0.011

Neural Network 0.750+/-0.005 0.793+/-0.004 0.803+/-0.008 0.863+/-0.013 0.874+/-0.008 0.887+/-0.006

Random Forest 0.756+/-0.005 0.762+/-0.007 0.755+/-0.008 0.823+/-0.010 0.819+/-0.011

Support Vector Machine

(Linear Kernel)
0.813+/-0.005 0.808+/-0.005 0.810+/-0.006 0.882+/-0.009 0.892+/-0.007 0.879+/-0.011

Support Vector Machine

(RBF kernel)
0.787+/-0.005 0.790+/-0.005 0.791+/-0.005 0.855+/-0.005 0.864+/-0.006 0.851+/-0.003

Table C.7: Validation results for the source apportionment hybrid models on measured

multiple pollution source data
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Algorithm 1: Generating the mixed data set through linear combinations of

the PSDs
initialisation: n=1, minimum composition=0.5, n components=3 and

mixed PSD dataset;

while n = N do
initialise mixture weights to 0;

mixed PSD to 0;

for component in n components do
if component = 1 then

randomly select the major component index and randomly assign a

weight to the mixture weights between the minimum composition

and 1;

rem = 1− sum(mixture);

else if component = 2 and component n components then
randomly select the next component index and randomly assign a

weight to the mixture weights between the 0 and rem;

rem = 1− sum(mixture);

else
randomly select the last component index and with weights in the

mixture is given by rem;

end

end
for mixture weight in mixture weights do

sampled PSD = sample a measurement for the corresponding pollution

source;

mixed PSD = mixed PSD+(mixtureweight ∗ sampledPSD);

end
append mixed PSD to mixed psd dataset ;

n = n+1 ;

end
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Algorithm 2: Generating the mixed data set through linear combinations of

the bin count data
initialisation: n=1, minimum composition=0.5, n components=3 and

mixed PSD dataset;

while n = N do
initialise mixture weights to 0;

mixed COUNTS to 0;

for component in n components do
if component = 1 then

randomly select the major component index and randomly assign a

weight to the mixture weights between the minimum composition

and 1;

rem = 1− sum(mixture);

else if component = 2 and component n components then
randomly select the next component index and randomly assign a

weight to the mixture weights between the 0 and rem;

rem = 1− sum(mixture);

else
randomly select the last component index and with weights in the

mixture is given by rem;

end

end
for mixture weight in mixture weights do

sampled COUNTS = sample a measurement for the corresponding

pollution source;

mixed COUNT S =

mixed COUNT S+(mixture weight ∗ sampled COUNT S);

mixed PSD = mixed COUNT S
sum(mixed COUNT S)

end
append mixed PSD to mixed psd dataset ;

n = n+1 ;

end
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Algorithm 3: Generating the mixed data set through linear combinations of

parameters of the MVG random variables
initialisation: n=1, minimum composition=0.5, n components=3 and

mixed PSD dataset;

while n = N do
initialise mixture weights to 0;

mixed PSD to 0;

for component in n components do
if component = 1 then

randomly select the major component index and randomly assign a

weight to the mixture weights between the minimum composition

and 1;

rem = 1− sum(mixture);

else if component = 2 and component n components then
randomly select the next component index and randomly assign a

weight to the mixture weights between the 0 and rem;

rem = 1− sum(mixture);

else
randomly select the last component index and with weights in the

mixture is given by rem;

end

end
for mixture weight in mixture weights do

µmixed = µmixed +(mixture weight ∗µcomponent);

Σmixed = Σmixed +(mixture weight ∗Σcomponent);

X ∼N (µ, Σ2);

end
Sample mixed PSD from X and append mixed PSD to mixed psd dataset ;

n = n+1 ;

end
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Figure E.1: Map of London showing Airspeck-S sensor locations and HERE traffic mon-

itoring locations
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Figure E.2: Weekly cumulative PM1, PM2.5 and PM10 for Sensor 90E275086B4D99A3

Figure E.3: Weekly cumulative PM1, PM2.5 and PM10 for Sensor D849BF7848210A4A
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Figure E.4: Weekly cumulative PM1, PM2.5 and PM10 for Sensor

E7C0CD8112BA98D7
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Figure E.5: PM1, PM2.5 and PM10 and traffic data for Sensor 90E275086B4D99A3
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Figure E.6: PM1, PM2.5 and PM10 and traffic data for Sensor D849BF7848210A4A
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Figure E.7: PM1, PM2.5 and PM10 and traffic data for Sensor E7C0CD8112BA98D7


