
Predicting Tidal Reflection

Dmitrijs Strizevskis

Master of Science

Computer Science

School of Informatics

University of Edinburgh

2020

Abstract

Tidal reflections are a persistent problem in over-water radio transmission, where the

changing sea level causes the signal that is reflected off the water surface to shift in

respect to the line-of-sight signal, periodically destructively interfering with it, thus

causing a drop in the overall signal strength. This issue is also known as tidal fading,

and, although it is a largely understudied phenomenon, there are known methods for

mitigating it, such as spatial and frequency diversity. To work well, these methods

require a means of predicting performance of tide-affected radio links, which is highly

non-trivial since the tidal height in itself can be notoriously difficult to predict be-

cause of its dependence on atmospheric conditions. This work addresses this problem

by designing deep learning models for forecasting performance of links affected by

tidal fading. Experiments carried out on three months of real data from an over-water

wireless network demonstrate that deep learning models are fit for this task, showing

good results in spite of the modestly sized dataset. Attempts to build general models

that predict performance of unseen before links proved to be unsuccessful, but the re-

sults also suggest that there is still untapped potential in training the models on larger

amounts of data. In addition to the practical part of this dissertation, it also features a

comprehensive theoretical interpretation of the phenomenon of tidal fading, which has

been lacking from the literature.

i

Declaration

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Dmitrijs Strizevskis)

ii

Acknowledgements

First of all, I would like to thank my supervisor Peter Buneman for introducing me to

this incredibly interesting topic and guiding me through this project from very early

on. I would also like to express my gratitude to William Waites and Mahesh K. Marina

for co-supervising the project.

I also wish to offer my special thanks to Finlay MacKenzie for setting up a UNMS

account, Mark de Vries for his valuable advice and Martin Davies for setting up Air-

Control which has proved crucial for this work.

iii

Table of Contents

1 Introduction 1

2 Background 3
2.1 Tidal fading . 3

2.2 Time series classification and forecasting 4

3 Physics of tidal fading 6

4 Data 11
4.1 Contents of the dataset . 11

4.1.1 Signal and bandwidth . 11

4.1.2 Sea level . 13

4.1.3 Weather . 14

4.1.4 Tidal fading onset markers 14

4.2 Data pipeline . 16

4.2.1 Data sources . 16

4.2.2 Cleaning and labelling . 17

4.3 Data analysis . 18

5 Methods 19
5.1 Model design . 19

5.1.1 CNN . 21

5.1.2 LSTM . 21

5.2 Baselines . 22

5.3 Making the most of data . 23

5.4 Hyperparameter tuning . 25

5.5 Training and evaluation . 26

iv

6 Experiments 28
6.1 Architecture choice . 28

6.1.1 Classification . 28

6.1.2 Regression . 29

6.2 Ablation study . 32

6.3 Generalisation across multiple links 34

6.4 Impact of dataset size . 36

6.5 Test set evaluation . 38

7 Conclusions 39

Bibliography 41

A Equations 45
A.1 Fresnel equations . 45

A.2 Path length difference in static water 45

A.3 Path length difference in tidal water 45

A.4 Angle approximations . 46

B Screenshots 47

C Tools 49
C.1 Using unms-stats . 49

C.1.1 Setting up a bash script run.sh 49

C.1.2 Setting up a cronjob . 49

C.2 Fecthing data from AirControl . 50

C.3 GUI for labelling . 50

D Architectures 52
D.1 CNN . 52

D.1.1 Diagram . 52

D.1.2 Tuned hyperparameters . 52

D.1.3 Tuning results . 53

D.2 LSTM . 53

D.2.1 Diagram . 53

D.2.2 Tuned hyperparameters . 54

D.2.3 Tuning results . 54

v

Chapter 1

Introduction

There are places in the world with limited access to broadband infrastructure due to dif-

ficult terrain. Examples of such places are the Scottish Highlands and Islands, where

the combination of mountain ranges, straits, lakes and low population density often

render wired broadband communications unaffordable. This gave an impetus to start

the Tegola project – a high-speed wireless network covering rural areas of Scotland [2].

Today the Tegola network provides many communities with broadband access while

running on highly affordable commodity hardware. However, wireless networks’ in-

herent sensitivity to the environment, sometimes in unexpected ways, proved to be a

challenge. In particular, some of the Tegola’s over-water links that span sea inlets are

affected by what has become known as tidal fading [18].

Tidal fading describes a situation where an over-water radio link experiences cyclic

drops in the signal strength caused by two signals – direct and reflected from tidal water

– cancelling each other out, with the phase of the reflected signal changing in time

along with the tide. This can result in substantially lower quality of service, severely

limiting the throughput for a considerable time and causing connection failures.

There are ways of mitigating tidal fading. For example, carefully installing an addi-

tional antenna at a different height can ensure that there is always at least one properly

functioning link at any given point in time. This approach is commonly known as

spatial diversity. The alternative approach is frequency diversity, where one can per-

form a timely switch to a different frequency channel, altering the phase difference

between the direct and the reflected signals [18]. However, switching to a different

frequency channel or antenna can incur a downtime, especially on cheap hardware.

This indicates the need for a method for forecasting performance of links affected by

tidal fading. This would allow a network technician or an automated algorithm to an-

1

Chapter 1. Introduction 2

ticipate approaching onsets of tidal fading and plan for them accordingly, scheduling

well-timed switches and avoiding false positive ones.

However, predicting tidal fading is not a trivial task. Although signal strength is

highly dependent on the sea level, knowing the sea level at a remote gauging station,

let alone relying on imprecise tide tables, does not explain all of the variance of signal

strength. This is because the propagation of tides depends on weather conditions such

as wind speed and air pressure [9]. Moreover, even if the sea level at the reflection

point were precisely known, reflectance can further be impacted by surface roughness

and, to a lesser extent, air humidity [19]. With so many intricate interdependencies,

manually modelling this process is highly challenging. However, the ability to col-

lect the relevant data enables us to train deep learning models, which are capable of

modelling otherwise intractable dependencies given enough data.

With the ultimate goal of contributing to solving the problem of tidal fading, this

work carries several purposes. The first is collecting a dataset and then using it to

design, train and evaluate deep learning models that can be of practical benefit in the

Tegola network. The second is being a reference that can assist in training these models

in the future when more data becomes available, along with the dataset, tooling, code

and practical tips. Last but not least, it attempts to close the apparent gap in the litera-

ture with regards to tidal fading by providing a comprehensive theoretical explanation

of the phenomenon.

The experimental findings of this work show that deep learning models are indeed

fit for predicting performance of tide-affected links, outperforming simpler baselines

despite seeing less than 200 tidal cycles in the training set. Although generalisation

between different links was not observed, there are indications that the models are far

from reaching their full potential and, as it stands, the size of the dataset appears to be

the largest bottleneck. On such scales, weather data was found to be a useless addition

to the set of input features, unlike tidal height data which was found to be a beneficial

input feature.

The structure of the dissertation is as follows: §2 covers the background material

relevant to tidal fading and deep learning for time series forecasting and classification,

§3 gives a comprehensive overview of the phenomenon of tidal fading, §4 describes

in detail the steps behind acquiring and processing of the data used in this work, §5

gives an overview of machine learning methods used in the experiments, which are

then presented in §6. Final conclusions with a brief summary of the results is provided

in §7.

Chapter 2

Background

2.1 Tidal fading

Despite tidal fading being a known phenomenon for a long time, the literature on the

topic remains sparse. This section gives an overview of the limited information that can

be found on the subject whilst the later chapter (§3) attempts to give a more complete

explanation of tidal fading to provide the reader with the bigger picture.

The book “Essentials of radio wave propagation” has a section on microwave prop-

agation over water that also concerns tidal reflections. The author suggests spatial

diversity as a solution to the problem and derives equations for estimating the best

separation of antennae to make sure that when either one of the antennae is in a sig-

nal strength trough (also commonly referred to as null), the other one is at the peak.

It does not go into details of the mechanism by which tidal fading occurs or the ef-

fect that weather can have on it [12]. S. Mason studies the effect that meteorological

conditions have on a radio link where the transmitter is installed on a floating dock

that moves with the tide. He finds that the impact of the height variation on the signal

strength dwarfs all other environmental factors [19]. However, despite the involvement

of tides, this case is not directly related to the actual tidal fading, through which the

weather can have an indirect effect on the transmission.

A paper that came out of the Tegola project in 2010 proposed frequency diversity

as a means of mitigating tidal fading, which is a cheaper alternative to spatial diversity

since it can be implemented purely in software with frequency hopping. Authors sug-

gested several strategies for deciding when to switch frequency channels – one of them

involving predictions of link’s performance to guide the decision [18]. Such predictive

models are the focus of this dissertation.

3

Chapter 2. Background 4

M. Pereira provides a more in-depth physical model of fading of electromagnetic

waves over conductive surfaces, such as seawater. He demonstrates how to work out

signal power attenuation using Fresnel equations as well as briefly describes different

strategies of mitigating fading [21], including those already mentioned.

In a recent paper, Gaitan et al. ran simulations to determine the influence that dif-

ferent settings of antennae heights and polarisation have on the signal strength in over-

water links affected by tides. As before, it does not feature a comprehensive explana-

tion of the phenomenon of tidal fading and the authors raise the fact that the problem

has received much less attention than it deserves given its significance [8].

2.2 Time series classification and forecasting

To my knowledge, tidal fading forecasting has never been addressed with machine

learning, let alone deep learning. Nevertheless, time series classification and forecast-

ing using deep learning are very active areas of research. Although this work concerns

a new domain in those areas, there are many conceptual similarities with other machine

learning problems where data comes in the form of time series.

For example, financial time series prediction is one such area that has received

a great deal of research attention in recent years, especially with the advance of deep

learning. A systematic review of publications in that field by Sezer et al. concludes that

deep learning models generally outperform more traditional machine learning meth-

ods. Authors find that recurrent neural networks (RNN), in particular, Long Short-

term Memory (LSTM) are the most commonly used architectures for time series fore-

casting, whilst Convolutional Neural Networks (CNN) are usually the architecture of

choice for classification tasks [10].

Wang et al. propose a modification to the CNN architecture, called the Fully Con-

volutional Network (FCN), which achieves highly competitive results across many

different time series classification problems without tailoring to each problem individ-

ually, making it a strong general baseline [32]. In a recent review, Fawaz et al. do a

comprehensive empirical study of different neural network architectures for time se-

ries classification. They also find that FCNs and Residual Networks (ResNets) achieve

state-of-the-art results for different tasks. Moreover, the authors published implemen-

tations of studied models on their GitHub [7].

Zhao et al. use LSTM networks for forecasting road traffic. LSTM networks

demonstrated better performance than classical models and simpler neural network

Chapter 2. Background 5

architectures. However, authors also find that the accuracy of predictions quickly dete-

riorates with longer forecast times [34]. Selvin et al. analyse the performance of CNNs

and LSTM for univariate stock price predictions, using overlapping windows of data

for training. They identify the CNN as the best architecture for the task [28].

Cerqueira et al. study different approaches to evaluation of performance of time

series forecasting models, including different variants of cross-validation techniques

[4]. Klimberg et al. do a breakdown of various forecasting performance measures and

give practical interpretations [16]. Note that in this work I refer to what they call Mean

Absolute Deviation (MAD) as Mean Absolute Error (MAE), which is another common

name for it.

Chapter 3

Physics of tidal fading

A two-ray ground-reflection model is a common way to analyse tidal fading whereby

we consider two components of the signal – the direct line of sight (LOS) ray between

the antennae as well as a secondary ray that is reflected off water.

Figure 3.1: The two-ray model.

Figure 3.1 illustrates the two-ray model. The direct signal path l is represented

as the green line, while the reflected signal paths r1 and r2 are in red. Line thickness

represents signal strength. The surface of water is not a perfect conductor, which

means that a portion of the secondary ray is refracted into the water according to the

Fresnel equations (A.1) [21], making the reflected beam lose part of its power, hence

r1 is thicker than r2. The smaller the angle of incidence of the reflected beam, the

higher the proportion of the refracted signal. We observe an equivalent effect with

visible light when we look at water and see a reflection that gets gradually darker

towards us (Figure 3.2a). The diagram also represents l as a thicker line than r1; this

is for a reason. Not all signals are emitted (or received) equal – the power of the

transmitted beam depends on which part of the transmitting antenna it is emitted from

and where it enters the receiver. Antennae have radiations patterns which determine

6

Chapter 3. Physics of tidal fading 7

the amplification of an outgoing/incoming signal based on how the signal is directed

through the pattern. Figure 3.2b shows the main lobe of an antenna’s radiation pattern;

the green signal goes through the area of maximum amplification, whereas the red

signal is transmitted at an angle with lower power. Figure 3.1 illustrates the same

situation – the two antennae are pointed at each other so that the direct signal takes full

advantage of amplification.

(a) Reflection in a lake. Photo by Jenny / CC BY

2.0
(b) Antenna lobe (in blue)

Figure 3.2

The receiver combines all incoming signals by adding them together, akin to wave

interference. Therefore, it may happen that, when the two signals are in anti-phase with

each other, the aggregate signal fades (is at a null). Figure 3.3 shows a toy example

of such destructive interference, where one signal has an amplitude of 1, the second

signal has an amplitude of 0.8 and they are in antiphase with each other. When the

reflection surface is still, one can fix this by tuning antenna heights until the phases of

the two signals shift relative to each other by half a wavelength so that they are aligned

in constructive rather than destructive interference.

δ = l− (r1 + r2)≈
2(h1− t)(h2− t)

d
, (3.1)

where t is the height of the tide at the reflection point, which we set to 0 in static water.

Equation 3.1, which gives the length difference of LOS and reflection paths, can

be used to work out the necessary change in antenna heights for achieving this (deriva-

tions in A.2, A.3). However, this situation gets more complicated in tidal waters since

antenna heights change along with the tide, causing the relative phase shift of the two

signal to drift, once in a while resulting in nulls. This is called tidal fading.

There are several ways one can approach this problem. In some situations, switch-

ing to a lower frequency may result in a wavelength large enough that it dwarfs the

https://www.flickr.com/people/26598370@N00

Chapter 3. Physics of tidal fading 8

(a) (b)

Figure 3.3: Destructive interference of two signals in antiphase (a). The 2nd signal has

a slightly lower amplitude, hence the resulting signal (b) is not completely flat.

phase shift caused by tides. For example, in a setup where h1 = 20m, h2 = 40m,

d = 8km and the sea level varies (∆t) by 5m, which is common in Scotland, the phase

shifts by at most 0.08m (see equations 3.1 and A.3). In that case, for example, switch-

ing to a 0.5GHz radio, which has a wavelength of 0.5m, would mean that, if tuned

properly, the antennae will never end up at a null. In fact, if the maximum phase shift

is below one-quarter of the wavelength, such setup should never experience any de-

structive interference at all. Alternatively, instead of increasing wavelength, one can

attempt to constrain the phase shift. As equations suggest, this can be done either by

sufficiently lowering the dishes or increasing the distance between them. Often this

is not feasible and, depending on the setup, can even be harmful because lowering an

antenna runs the risk of obstacles, e.g. passing ships, getting in the way of the beam,

and it can have an amplifying effect on the reflected signal. In fact, sometimes the

opposite is done.

α2 ≈
2h1

d
, α1 ≈

2h2

d
(3.2)

Raising antennae can help in two ways. First, it increases the angle of incidence

(θ) of the reflected signal, increasing the amount of power that gets absorbed by water.

Second, it also increases the angle between the reflected ray and the axis of maximum

amplification of the main lobes of the antennae (equations 3.2, see the derivation in

A.4), reducing the amplification of the reflected signal. Note that the shape of the lobe

(Figure 3.2b) is such that amplification falls more rapidly as the angle gets farther from

0 degrees. This reveals yet another potential solution to the problem, which is often

done in practice. One can tilt one of the antennae up, which corresponds to a clockwise

rotation of beams on Figure 3.2b. Although this causes a slight misalignment of the

Chapter 3. Physics of tidal fading 9

LOS path, due to the shape of the lobe, it loses less power than the reflected path.

Equations show that the lower antenna will have the larger angle between the reflected

path and the axis of maximum amplification, making it the best candidate for tilting

since this will result in more power attenuation per degree than with the other antenna.

The aforementioned methods have two common drawbacks. First and foremost,

sometimes they are simply not enough to counteract tidal fading: admissible antennae

heights are subject to landscape features and resources (building a tall mast or moving

an antenna uphill is expensive), low frequency radios are not suited for high-bandwidth

channels [11]; with some exceptions, the distance between the antennae can hardly be

changed, as it is dictated by where they are needed, and sometimes tilting an antenna

will not be enough. Second, since these methods are aimed at making the reflected

signal weaker, not only do they reduce the effects of destructive interference, but they

also do the same to constructive interference, sacrificing sometimes better performance

for consistency. This is where active fading mitigation strategies can come into play.

We have seen that the antenna heights and the radio frequency determine the nom-

inal relative phase shift of the two signals, i.e. if the sea level were fixed. This means

that switching to an antenna at a different height or hopping to different frequency

channel will alter the phase shift. The former is called spatial diversity and the latter

– frequency diversity [18]. Spatial diversity is more expensive as it requires additional

hardware. Frequency diversity, however, is subject to availability of the required fre-

quency band. With spatial diversity, the trick is then to place one additional antenna

at such elevation that, when one antenna is at a null – the other one is at peak perfor-

mance. Similarly, for frequency diversity, one can calculate the necessary frequency

separation between two channels to ensure that when the two signals are shifted by

180◦ in one channel, they are perfectly aligned in the other channel [18]. Then, by

timely switching between antennae or channels, one can guarantee that at least one

link is not affected by destructive interference, hence avoiding nulls. In fact, one can

use more than two spaced out antennae/frequency channels to get a better guarantee

for the best performing link at any given time. However, there is yet another pitfall.

Switching can be costly, especially, on cheap hardware where it can result in down-

time on the order of seconds. This is why it is important to switch at the right moment,

avoiding false positives calls. Unfortunately, detecting “the right moment” is not a

trivial task. One could, for example, simply monitor signal strength on the active link

and switch whenever it falls below a certain threshold, but this can be highly unreliable

in noisy conditions; for example, a drop in the signal strength can be caused by a pass-

Chapter 3. Physics of tidal fading 10

ing ship or a bird landing on the antenna, thus, triggering a false alarm. Alternatively,

one could time switches based on the tidal schedule. However, tidal height is hard to

predict precisely as it depends on atmospheric conditions.

Atmospheric pressure can have a strong effect on tides. High pressure prevents

tides from growing large; conversely, low atmospheric pressure, e.g. during hurricanes,

is fraught with tides significantly larger than usual. Strong wind can also have an

amplifying effect on tides in the direction where it blows [9]. Other, less influential

factors, which do not affect the sea level but can affect links’ performance, include

roughness of the sea and air humidity [19] – the former can affect reflectance for radio

waves with wavelengths comparable to the size of sea waves, and the latter can slightly

weaken both signals as well as change the refractive index of air [20], affecting the

amount of the secondary signal that gets absorbed by water.

One could measure the sea level directly, avoiding the need for predicting it; how-

ever, it is very expensive, requiring large investments in hardware and maintenance.

Alternatively, measurements from gauging stations can sometimes be obtained from

3rd party sources, like the National Tidal and Sea Level Facility (NTSLF) in UK. Of

course, the farther the gauging station from some point, the less accurately its mea-

surements reflect the sea level at that point. For example, tidal height data from the

Tobermory gauging station was used in this work; the station is roughly 50km away

from the reflection points of links in question. Figure 3.4 demonstrates that, whilst the

signal strength strongly depends on the sea level at the remote station, its variance is

nowhere near fully explained, especially between peaks and troughs (a difference of

3 dBm corresponds to an approximately two-fold increase/decrease of signal power).

This work is an attempt at predicting it better by training deep learning models to take

all those different variables into account.

(a) Scatter plot (b) 2D Histogram

Figure 3.4: Signal strength (dBm) of a link vs sea level (m) at a remote gauging station

Chapter 4

Data

Data plays the key role in the process of designing machine learning algorithms. This

chapter describes the design process of the dataset for the task, including acquisition,

preprocessing and analysis of various forms of data.

4.1 Contents of the dataset

The full dataset consists of three datasets – one per radio link – each consisting of time

series with a 5-minute step for the time interval from the 8th of March till the 25th of

June. The time series are:

• Signal and bandwidth time series for the particular link

• Sea level time series taken at the nearest gauging station

• Weather time series at a location near the radio links: wind speed (both magni-

tude and degree), air pressure and air humidity

• Markers indicating onsets of tidal fading. These are not part of raw data and are

artificially created during preprocessing for use in classification (see §4.1.4).

4.1.1 Signal and bandwidth

The primary form of data in the dataset is signal strength and bandwidth of tide-

affected radio links, which are key in ascertaining whether the link is undergoing tidal

fading – when they are high, there is clearly no significant fading. Moreover, the cur-

vature of the time series can hint at the stage of the fading cycle. Although signal

11

Chapter 4. Data 12

strength and bandwidth are closely related, the former is a relatively low-level mea-

sure reflecting a physical property of the aggregate received signal, whereas the latter

is a high-level measure that goes through many layers of hardware processing and ad-

justment. For example, whilst the signal level time series is relatively smooth, the

bandwidth time series can have plateaus where it caps or where the device takes steps

to stabilise it. On the other hand, bandwidth is perhaps more important as a prediction

target because it is more easily interpretable – reporting a decrease in bandwidth from

100 to 25 Mbps is more telling than an arbitrary decrease from -68 to -74 dBm of sig-

nal strength. For the same reason, it proved useful as a reference for creating markers

during preprocessing (§4.1.4).

The Tegola network runs on Ubiquiti devices, which report both signal strength

and bandwidth as integers, with the signal being reported in decibel-milliwatts (dBm)

and bandwidth (both download and upload) in Mbps. This makes the range of signal

level values rather sparse due to the logarithmic scale of dBm. To accumulate enough

data for the purpose of machine learning, it was decided to start collecting it early in

March. Measurements were taken at 5 minutes intervals for three links that exhibited

the most apparent tidal fading. Although higher resolution (on the order of 5-20 sec-

onds) is possible (see section §4.2 for more details), it would make these time series

significantly out-of-scale with the rest of the data. The final range of signal and band-

width time series is from the 8th of March till the 25th of June. With a lunar day lasting

24 hours and 50 minutes and two tidal cycles per lunar day [24, 31], this works out to

roughly 200 tidal cycles across 31k data points per link.

Preliminary data analysis revealed some unfavourable aspects leading to additional

preprocessing steps. On one of the links, the signal time series had clear outliers, with

sudden single spikes up to -20 or down to -100 dBm from within the normal range of -

50 – -80 dBm. Such exponential jumps can be attributed to something passing between

the antennae, e.g. a ferry, or an antenna swaying in the wind etc. Because these spikes

were few and far between, keeping them in the dataset to build up robustness to this

kind of noise was pointless; it could, however, be useful in a larger dataset – one

could even artificially augment the dataset with such artefacts – but for a dataset as

small as ours that would mean needlessly losing much signal-to-noise ratio. Hence, a

preprocessing step was added that removes all points below or above a certain threshold

and replaces them with the average of the neighbouring points.

Another observation was that the Rx and the Tx bandwidth curves, otherwise be-

having in almost the same way, sometimes would not always both plateau at the same

Chapter 4. Data 13

level. For example, while the Tx curve is capped at around 150 Mbps and appears

flat, the Rx curve can fluctuate some 10s of Mbps above this flat line. Due to their

similarity, keeping both statistics in the dataset was excessive, but, for example, taking

the average of the two would mean that a sharp drop from the plateau, which could

potentially be a useful signal to models, would be smoothed out by the second curve.

Instead, the minimum of the two curves was taken, which preserved the flatness (see

the orange line on Figure 4.3 for an example).

Finally, it was also noted that bandwidth was capped at different levels on different

links. On a dataset of this size, this could hinder generalisation between several links.

To address this, bandwidth was scaled by dividing it by the value at which it caps.

This value is set manually in the GUI labelling tool (§4.2), but one could determine

it automatically. These reference values were stored as part of the dataset so that true

bandwidth could be restored by multiplying by the corresponding reference value. The

relative scale of bandwidth with respect to the cap also served as a useful general

heuristic in determining onsets of tidal fading (§4.1.4).

4.1.2 Sea level

Sea level is the second most important candidate to be added into the dataset. As shown

in §3 (Figure 3.4), there is strong dependence between signal strength/bandwidth of a

link and the stage of the tide. However, acquiring accurate sea level data is difficult.

Without large investments into one’s own tide gauges, one has to rely on third party

sources. In the UK, National Sea Level and Tide Facility (NTSLF) and British Oceano-

graphic Data Centre (BODC) provide real-time tidal data as well as historic records.

BODC publishes monthly data from 43 gauging stations across the UK. The gauging

station in Tobermory is closest to the three radio links (see B.1 for the locations on the

map), so it was chosen as the source of the tidal data for March through June. The

data has a machine-readable format and the tidal height (relative to the admiralty chart

datum) is reported in metres every 15 minutes. During preprocessing, this data was

linearly interpolated to match the resolution of the signal/bandwidth time series.

An important criterion when considering potential sources of data was the ability

to acquire it in near real-time with the intent to be able to apply the resulting models

“in production”. This is complicated by the fact that, currently, NTSLF do not publish

real-time tidal height data in machine-readable formats. Instead, it is displayed as a

raster image of a chart (see Figure B.2 for an example). In the event that raw real-

Chapter 4. Data 14

time data remains inaccessible, one could write a script to read off the measurements

from the chart. Additionally, to account for the cases when sea level data is completely

unavailable for any reason, an ablation study was performed (6.2) where tidal data was

completely removed from the input features.

4.1.3 Weather

Chapter §3 explains the effects that weather can have on tidal fading. Since in our case

tidal height measurements are taken at a remote location, there is a lag between the

measurement and the actual sea level at the reflection points. This lag can potentially be

further aggravated by high air pressure and wind. Although it was unclear whether the

effects would be noticeable in this particular geography on a relatively small dataset,

incorporating weather data was simple enough to test it in the ablation study (6.2). I

chose OpenWeatherMap for the weather API provider because they featured historical

weather data for any coordinate on the map. The data has an hourly step and, amongst

other parameters, includes wind speed provided in degrees and magnitude (m/s), air

pressure (hPa at sea level) and humidity (%).

Similar to the sea level, weather data was interpolated to 5-minute steps; however,

special care was taken with respect to wind speed. Whilst air pressure and humidity are

smoothly behaving scalars, wind speed, which is a vector quantity, can be restricted by

the geographical features. An extreme example would be a narrow fjord where wind

can blow only in either of two directions. In that case, linear interpolation would be

misleading. Instead, I chose nearest-neighbour interpolation for the wind speed time

series.

4.1.4 Tidal fading onset markers

To train a supervised model to predict “onsets of tidal fading”, one needs a definition

for such onsets. As seen on Figure 4.1, signal strength on a tide-affected link changes

smoothly with time, without abrupt “drops”. This means that “an onset of tidal fading”

is rather vague – at which point of the smooth curve does it start? One way to define

it could be the peak of the signal curve followed by a slow but steady drop. However,

because of the logarithmic scale as well as the rounding that is applied to the signal

strength values on the hardware end, the top of the curve looks rather flat, making it

hard to pinpoint the peak. Moreover, it can take on the order of hours until the signal

drops from the peak to the point where it noticeably affects bandwidth, making this

Chapter 4. Data 15

definition not very practical. The first attempt was to instead manually mark all points

where it was apparent that the drop in signal strength could not be attributed to noise

and that further descent was imminent. With the help of the developed GUI tool (§4.2)

it was not very time consuming on a dataset of this length; however, on a dataset with

a timespan on the order of years it would be infeasible for a solo effort. Nevertheless,

a larger issue with this approach turned out to be the difficulty of keeping consistency

when deciding where to put a marker or whether to put it at all. This was especially

problematic in highly noisy regions or when the amplitude of the tide was large enough

that there were two peaks of signal strength per one peak of sea level, as seen on Figure

4.1.

Figure 4.1: Screenshot from the GUI tool for labelling, showing two peaks of signal

strength (green line, left axis) per one peak of tidal height (orange line, right axis). This

happens when the tide is high enough that the phase shift exceeds the point where the

two signals are in phase.

The second and final attempt involved strictly defining the onset of tidal fading in

terms of loss of bandwidth relative to the value at which it caps, which, after scaling

(see §4.1.1), is exactly 1.0 on all links. Such a definition enables simple automatic

labelling. After many experiments with different parameters, the following criteria for

an onset gave visually consistent results that also made practical sense: a point con-

stitutes an onset of tidal fading if it marks the moment where bandwidth falls below

a 72% threshold after staying above it for at least 20 minutes and then stays below

it for at least 30 minutes. These settings required little to no manual corrections to

achieve seemingly consistent labelling across all three links. The caps of the three

links range from 140 to 170 Mbps, so the thresholds roughly fall in the range of 100

to 120 Mbps. It is unclear whether the same approach would work well for links

Chapter 4. Data 16

with drastically larger capacity or even for hardware from other vendors that may han-

dle bandwidth differently. Therefore, this step must be performed with special care

– adjusting heuristics on a case-by-case basis – if one intends to train a model that

generalises well across multiple links.

4.2 Data pipeline

This section covers the the details of the tools that were used in acquiring, processing

and labelling of the dataset so that the experiments can be reproduced in the future on

a larger dataset or for a different network.

4.2.1 Data sources

The Tegola network is centrally managed via the Ubiquiti Network Management Sys-

tem (UNMS) and AirControl (predecessor to UNMS). They allow for monitoring

statistics such as signal strength and bandwidth via a GUI in the browser, but UNMS

also exposes an API through which one can programmatically query statistics of the

devices. The web GUI is helpful in determining links of interest – significant fading

will result in a highly periodic wavy signal strength curve with an amplitude of up-

wards of 10 dBm (e.g. as seen on Figure 4.1). After identifying the affected devices,

one can periodically poll them using the API to retrieve recent statistics (e.g. signal

strength, bandwidth) with a relatively short timestep – 5–20 seconds. In March I set up

a simple Python tool unms-stats to retrieve signal strength statistics from the specified

list of devices and store them in a SQLite database. This command-line tool can be

used both for accumulating data at a higher resolution than what is available in UNMS

or AirControl and for retrieving data in real-time for use in production. I published the

code for unms-stats on GitHub1, and the appendix (C.1.2) includes a sample cronjob

setup for continuous monitoring. However, soon after setting up custom monitoring, I

got access to AirControl, which had been set up to monitor many more links. Amongst

other statistics, AirControl also collected bandwidth data, which unms-stats was not

set up to collect at the time since the benefits of bandwidth data had not yet become

apparent. Thus, it was decided to keep unms-stats for redundancy as a back-up alter-

native and use the AirControl data instead. The data stored in AirControl has lower

resolution with 5-minute steps, which is still fine-grained enough to capture important

1https://github.com/swifteg/unms-stats

Chapter 4. Data 17

features of the signal curve and it is on the same scale as the rest of the data, i.e. the

sea level and weather time series. Unfortunately, AirControl does not feature a simple

way of downloading all of the persisted data with the shortest possible timestep – see

the appendix for a work-around (C.2). In future work, it is recommended to use unms-

stats, both for a higher resolution, which can always be downsampled if needed, and

for easier real-time use.

As mentioned in §4.1.3, weather data for a particular geographical coordinate can

be acquired from 3rd party services in a variety of machine-readable formats. The

same is true for tidal height data in UK, which can be requested from BODC. However,

real-time tidal height data is not easily accessible, and obtaining it will either involve

parsing an image of a chart from NTSLF or relying on other 3rd party providers.

4.2.2 Cleaning and labelling

When data from all sources is collected, it goes through preprocessing and labelling

steps (Figure 4.2). This is repeated per link. First, a script bundles signal, bandwidth

and sea-level time series into one, interpolating the sea level to match the 5-minute

timestep. If the radio link ever lost signal it would appear as null in the data. These

points are dropped from the dataset, which results in “tears” in time series that are

carefully handled before feeding the data to machine learning algorithms (see §5.3).

Figure 4.2: Data processing pipeline

The output of the first step is then passed on for labelling, i.e. markers of tidal

onsets are added to the dataset. This is performed in a semi-automatic fashion using

a developed GUI tool (Figure 4.3). The tool supports editing markers manually, but

it also implements automatic labelling based on the criteria described in §4.1.4. The

appendix has a more detailed description of its features and controls (C.3).

Chapter 4. Data 18

Figure 4.3: GUI tool for dataset labelling

The third step bundles the output of the first step with markers and weather data,

interpolates the weather data, transforms bandwidth based on the reference value (see

§4.1.1) set in the labelling tool, removes outliers, trims any excess data and serialises

the dataset. At this point, the data is clean and ready for statistical work. The further

processing steps are more narrowly tailored to machine learning algorithms and are

described in chapter §5.

4.3 Data analysis

A closer look at the datasets for the three links (from now on referred to as links #1,

#2 and #3) revealed some differences which could hinder generalisation. Link #1 is

the more consistent, behaving similarly during different tidal seasons (the amplitude

of the tide changes all the time from around 1m to 5m with a period of roughly 2

weeks). Amplitudes larger than 4.5m would result in 2 peaks of signal strength per

high tide, whereas amplitudes of around 3.2m would result in a highly spiky signal

curve. Nevertheless, the labelling for this link is more or less uniform across the entire

range. Link #2 is less affected by tidal fading in general, and there appear to be “islands

of stability” where no significant fading occurs at all, making the labelling more sparse.

Link #3 only ever experiences tidal fading when the amplitude of the tide is above 2m,

so the labelling also is not uniform. See the appendix for supporting figures (B.3).

Chapter 5

Methods

There are several approaches to forecasting performance of radio links affected by tidal

fading. One approach is to frame it as a classification problem and train a model to pre-

dict whether or not there will be an onset of tidal fading in the near future. The main

advantage of this approach is that the output is easily interpretable – it is informative

even to a casual user and can be used as part of an automated fading mitigation proce-

dure, e.g. slow frequency hopping [18]. On the other hand, the disadvantages are that

onsets of tidal fading are hard to define, which is elaborated in §4.1.4, making it dif-

ficult to have a consistent, generalisable and, at the same time, useful labelling across

data from different radio links. It also lacks context – a network technician may prefer

a more detailed picture of the link’s performance to a binary indicator. A different ap-

proach is an autoregressive model that outputs a continuation of performance curves,

i.e. signal and bandwidth, for some number of timesteps into the future after the last

input. Relating such output to tidal fading is not as straightforward as a binary indica-

tor, but it provides a bigger picture, and, with additional postprocessing steps, one can

infer the same kind of labels as the output of a classifier. Whilst the classifier model

is more true to the topic of predicting tidal fading end-to-end, the regression model

perhaps has more practical use. That is why in this work I considered and evaluated

both approaches.

5.1 Model design

The first step in designing models was to decide on the format of input and output to

the models. Doing that, it was important to strike a balance between practicality and

efficient use of the dataset. For example, doing a prediction for one future timestep

19

Chapter 5. Methods 20

while conditioning on a single past timestep would have little practical use, but would

result in a large number of independent input-output pairs for training. The other

extreme would be feeding the model the widest possible window of past time series,

requiring a more complex model, but, at the same time, making the training set too

sparse for the model.

A 6-hour window of most recent data was chosen for the input because this roughly

corresponds to a half-period of the tide, allowing the model to witness the last peak or

trough. Given a 5-minute timestep, this corresponds to a 72-point long input sequence.

With the help of some extra steps described in §5.3, splitting the dataset into such sam-

ples still resulted in a fairly sized training set. The output of the classification model

is a one-hot encoded vector, where classes correspond to disjoint future intervals that

an onset of tidal fading may fall into. To account for predictions getting less accurate

the further the targets are, these intervals are sized exponentially: 0–15 minutes, 15-60

minutes, 60-120 minutes, 120-240 minutes and from 240 minutes to infinity. Although

it would be useful to have an even shorter first interval, any less than 15 minutes would

result in training samples being too noisy because of imperfect onset marking (§4.1.4).

For the regression case, the output is 3-hour long multivariate time series of future

bandwidth and signal strength, which is twice as short as the input data but is still long

enough to schedule fading mitigation routines well in advance.

The next step was deciding on architectures for deep learning models. For experi-

menting with deep learning models I extensively used the Keras library [5] with Ten-

sorflow back-end which allowed for quick prototyping, evaluation and hyper-parameter

tuning. Although Keras does not feature all of the latest state-of-the-art architectures,

the modest size of the dataset is probably the most dominant performance bottleneck,

rather than a suboptimal choice of an architecture. Nevertheless, there are important ar-

chitectural choices that may affect both the validation performance and computational

efficiency.

Both in the classification and regression modes, the input to a model is a multi-

variate time series. A good architecture will, therefore, be suited for extracting fea-

tures from temporal sequences. LSTMs and 1-dimensional CNNs, which are widely

used for time series classification and forecasting (see §2.2), are first-class citizens in

Keras. Because I highly relied on automatic hyperparameter tuning (see §5.4), I kept

the architectures conceptually simple to avoid a combinatorial explosion of different

hyper-parameter combinations. The following two subsections describe the skeletons

of the tested CNN and LSTM models. For classification, I also compared them against

Chapter 5. Methods 21

more involved architectures – Residual Networks (ResNet) and Fully Convolutional

Networks (FCN) – that showed the best performance in a study of different architec-

tures for time series forecasting [7]. These architectures, implemented in Keras, were

taken as is from the authors’ public repository.

5.1.1 CNN

Convolutional neural networks have highly parallelisable computation graphs [23] at

the expense of not intrinsically modelling time dependence, unlike LSTMs. This

makes CNNs more lightweight in comparison, allowing for deeper models or faster

compute times. The very first experiments were done with the most basic “vanilla”

CNN architectures, with a number of equally-sized 1-D convolutional layers stacked

on top of each other without pooling layers, followed by two fully connected layers

– a hidden layer with ReLU activations and the final output layer with either linear

activation in the regression case, or softmax activation in the classification case. Early

hyperparameter tuning attempts showed that models with a relatively high number of

layers (around 8) and few filters (also around 10) performed the best. Deep networks

and deep CNNs, in particular, can suffer from the vanishing gradients problem, when,

due to repeated multiplication, gradients from the input layer have hard time propa-

gating through many hidden layers [7]. Because raw input features can be important,

especially to the autoregressive model, with inspiration from the ResNet architecture

[7], I added a skip connection from the input to the end of the stack of 1-D convo-

lutions. Unlike in ResNet, the skip connection performs concatenation (rather than

elementwise sum) and there are no skip connections in-between convolutional layers,

nor are there batch normalization layers. The filter width was fixed at 3 and the multi-

variate time series is passed as multiple channels. Refer to the appendix (D.2) for the

diagram of the architecture.

5.1.2 LSTM

LSTM, a type of recurrent neural networks, processes timesteps one after another,

which makes it impossible to parallelise computations in the time dimension, render-

ing LSTMs computationally more expensive than CNNs, especially for long input or

output sequences; however, this naturally captures time dependence of time series.

For the classifier I chose the most basic skeleton – a number of LSTM cells stacked

on top of each other, with the final output of the top cell connected to a hidden dense

Chapter 5. Methods 22

ReLU layer, followed by the output layer with softmax activation. The autoregressive

model is different – it employs the encoder-decoder architecture where, first, the en-

coder compresses the input into hidden latent space and then the decoder decodes it

into the output sequence. Because the decoder can have a different input format to the

encoder, this configuration allows to train our model using teacher forcing.

When training the model with teacher forcing, the decoder gets passed the i-th

ground truth value before predicting the i+1-th step. During prediction, ground truths

values are unavailable, so instead the output of the decoder is passed as the next in-

put [33]. Teacher forcing speeds up training of deep learning models and is widely

used in autoregressive models, especially in the field of natural language processing

[13]. Nevertheless, there are conflicting views on the effect that this procedure has

on generalisation and whether it should be avoided. The concerns stem from the fact

that the decoder generates output from different distributions during training and in-

ference – the former distribution is a conditional on the ground-truth prefix and the

latter is a conditional on the previous outputs of the model. The disparity between the

two is commonly known as exposure bias, and its impact on generalisation is debated

[13, 25, 17, 27].

To contrast the CNN-based model (§5.1.1), which was trained conventionally, I

used teacher forcing for the LSTM-based regression model to test whether it would be

beneficial in our scenario. Both the encoder and the decoder are made up of stacks of

LSTM cells of the same height. Once the last input time step is encoded, the state of

the topmost cell is passed to the first level of the decoder. The first input to the decoder

is the last input to the encoder, except that only the signal and bandwidth values are

kept to match the format of the output. All following inputs are passed in accordance

with teacher forcing. Each output of the final LSTM layer of the decoder is passed

to a fully connected layer with ReLU activation, followed by a fully connected linear

layer with two output nodes – signal and bandwidth respectively. Refer to the appendix

(D.2) for the diagram of the architectures.

5.2 Baselines

To get a good sense of their comparative performance, deep learning classification and

regression models (§5.1) were compared against simpler baselines. A natural choice

for classification was multi-class logistic regression. Similarly, I picked linear regres-

sion for the regression case. However, because of highly periodic data, another very

Chapter 5. Methods 23

strong candidate for a regression baseline was the seasonal naive method.

A seasonal naive model simply makes a forecast that is equal to the value observed

at the same stage of the last season. In our case, the season is the tidal day, which lasts

24 hours and 50 minutes. For example, if the model were to make a prediction for the

time interval 13:00 – 16:00 on the 2nd of January, it would output the historical values

for 12:10 – 15:10 of the 1st of January, without regard for the inputs to the model.

Although conceptually simple, there were several corner cases that had to be handled

with care for the sake of fair evaluation.

For example, the model can be asked to make a forecast for a range that is at

the beginning of the training data, in which case it has nowhere to look up the value

from the last season. To avoid errors, one can fall back on the naive method that

simply outputs the mean of the input time series. However, this can result in skewed

validation results for sensitive metrics, like the mean squared error. To avoid this,

samples corresponding to the earliest tidal day were dropped from the validation set.

Another corner case happens when the last season has missing timesteps (see

§4.2.2). Dropping all such samples from the validation set, like in the previous case,

would mean losing too much validation data. Instead, these missing values are inter-

polated on the fly. The reason why these interpolated values are not part of the dataset

is that these “tears” can be many timesteps long – keeping them would add too much

noise to the training data. At the same time, it is only fair that the seasonal naive model

is validated on such samples since they occur in practice.

5.3 Making the most of data

The relatively small size of the dataset necessitates the use of special techniques to

take full advantage of it. The situation is made worse by the fact that we are dealing

with time series, therefore temporal ordering of points must be respected. It is further

complicated by the presence of missing values or “tears” in the time series (see §4.2.2).

This section goes into details of how these issues were handled.

A straightforward way to split the dataset would be to partition it into disjoint 72-

steps long samples. Given a 31k-point dataset (for a single link) this would result in

a mere 430 samples, even without accounting for samples that are thrown out because

of missing values. After setting aside sizeable chunks of samples for validation and

test sets, the training set would remain unacceptably small. This approach would work

perfectly well for a dataset orders of magnitude larger than ours. For our case, a much

Chapter 5. Methods 24

more involved pipeline was necessary.

At the start, a dataset (for a single link) is split into two: the last 10% are held

out for the test set, and the first 90% are allocated for training and validation. The

test set is kept until the end to test how the final model would perform in practice.

Both the training/validation and the test sets are then processed independently. Each

(part of) dataset is split into continuous intervals with no missing values. Then, to

generate more samples, each interval is split into overlapping samples with a specified

stride. This technique lowers the information density of the dataset since any individual

sample now carries less unique information; however, it increases the total amount of

information in the dataset as the model does get some new insight from samples that

are made up of two disjoint samples. The lower the stride, the less information-dense

the dataset becomes. I found that, in our case, lowering the stride beyond 3 gives

virtually no performance improvements while substantially increasing the size of the

dataset. It was therefore kept at 3 for all of the experiments.

Unfortunately, using overlapping data ensued in yet another challenge. To be able

to ensure proper generalisation of a model, the validation set must come from the same

distribution as the training set [14]. In the simple case of the disjoint dataset partition-

ing described above, this is easily achievable by randomly selecting some proportion

of samples for the validation set. However, in the case of overlapping samples, this

would result in significant overlap between training and validation sets, making esti-

mates of the generalisation error highly biased. One could instead allocate the tail of

the dataset for validation purposes, but that would then result in a disparity between

the validation and training data distributions, especially for seasonal data. A way to

address this is to use k-fold cross-validation (CV), where the dataset is split into k

equal continuous parts (k is usually between 5 and 10). The model is then fit k times,

each time with a different fold for the validation set and the other k− 1 folds as the

training set. The final generalisation error is then estimated as the mean of k validation

errors of the k runs. This gives a better estimate than only using the tail because the

model is evaluated on different parts of the dataset, some of which may be “harder”

than orders. It is important to note that there is still some overlap in-between bordering

folds. Since these overlaps are now constrained in small regions, unlike when samples

were shuffled, they can now be removed without losing as much data as before. This

variant of CV is known as hv-block CV [22]. Figure 5.1 illustrates the described pro-

cess. Once the overlapping regions are removed, each fold can be internally shuffled

without breaking any temporal dependencies or introducing new overlaps. When using

Chapter 5. Methods 25

Figure 5.1: (1) Time series with a missing value (tear) (2) gets split into continuous

intervals (3) intervals are split into overlapping samples (4) 1/k of continuous samples

are selected for validation, the rest for training (each run of CV, a different disjoint part

is selected) (5) overlap between the validation fold and the training folds is removed

data from multiple links, I ran hv-block CV on each dataset independently and then

merged every i-th block with the other i-th blocks from other datasets.

A useful consequence of CV is that it allows estimating standard errors of reported

metrics (eq. 5.1). Although runs of k-fold CV are not truly independent among them-

selves, which is a necessary condition for calculating the standard deviation of a sample

statistic, for small enough k’s it nonetheless provides a good approximation [1]. I used

these estimates to put “errors bars” on the evaluation metrics.

SE(θ) =
SD(θ)√

k
≈
√

Var(CV1(θ),CV2(θ), ...,CVk(θ))

k
, (5.1)

where θ is a statistic, SE(θ) is the standard error of θ, SD(θ) is the standard deviation

of θ, k is the number of folds, Var is sample variance, CVi(θ) is θ reported on the i-th

run of CV.

5.4 Hyperparameter tuning

To pick good parameters for the models described in §5.1, I heavily relied on dis-

tributed hyperparameter tuning provided by the Google Cloud Platform (GCP) as part

of their AI platform. It features Bayesian optimisation, which, rather than performing

a complete grid search of the parameter space, uses information from previous runs

to explore its most promising regions [30]. Because CV makes the training process

roughly k times longer, when running hyperparameter optimisation, I only used vali-

dation on a single fold, which is equivalent to the “tail validation” mentioned in the

Chapter 5. Methods 26

previous section. Although, this results in a suboptimal estimate of the optimisation

target, this was a necessary compromise given the high cost of running full CV.

Each optimisation job was set up to run for 50 trials with the validation loss as

the optimisation target. Refer to the appendix for more information on which hyper-

parameters were optimised for each architecture, the settings that were passed to the

optimisers and the results that were obtained (D.1, D.2). Moreover, running hyperpa-

rameter tuning on the cloud required some specific “scaffolding” and reorganisation of

the code. The supplied material has a working sample setup.

5.5 Training and evaluation

This section goes into detail on how the models were trained and evaluated throughout

different experiments. The experiments themselves are presented in the next chapter

§6.

Before training, all the input time series would get normalised to zero mean and

unit variance (standardised) [29]. Categorical cross-entropy and mean squared error

(MSE) loss functions were used for training multi-class classification and regression

models respectively. Adam optimiser [15] was used with the learning rate of 0.001. At

first, there were problems with convergence of regression models. The hypothesis is

that it was caused by the two target features – signal strength and bandwidth – having

significantly different scales, causing MSE to perform badly as it is scale-dependent

[3]. In fact, standardising the target sequences resolved the issue.

When reporting validation MSE, one could rescale the outputs and then report MSE

on unscaled signal and bandwidth. However, because signal strength takes orders of

magnitude larger absolute values than relative bandwidth, MSE would be dominated

by signal residuals, with bandwidth residuals having little to no effect on the measure.

Hence, I did not apply inverse normalisation before calculating validation MSE. The

resulting metric is useful for comparing models against each other, but it is otherwise

difficult to meaningfully interpret it. To better understand the results of regression

models, I also calculated the mean absolute percentage error (MAPE), which has a

clear interpretation – the average relative deviation of predictions from the true value.

MAPE =
1
N

N

∑
i=1
|yi− ŷi

yi
|; MAE =

1
N

N

∑
i=1
|yi− ŷi|, (5.2)

where yi is the i-th target value, ŷi is the i-th prediction, N is the number of samples.

Chapter 5. Methods 27

MAPE is scale-invariant, but not shift-invariant, e.g. targets cannot be zero [3], so

the standardised outputs needed to be rescaled before calculating the measure. I cal-

culated the average MAPE per target feature across all timesteps and validation/test

samples, as well as the average MAPE per timestep to see how performance varies be-

tween earlier and later predicted timesteps. MAE was also reported for the evaluation

on the test set.

Classification performance was evaluated using the F1 score [26], which, for the

multi-class case, is calculated for each class separately. An important characteristic of

F1, is that it takes into account both precision and recall, highly penalising the score

if either one is low. This is especially advantageous for our case since the classes are

highly imbalanced. In addition to calculating F1 scores per class, I also calculated the

mean F1 score of all classes. To prioritise underrepresented classes during training,

class weights were passed to the optimiser. A class’s weight is the inverse proportion

of the number of its occurrences to the total number of samples.

For evaluation, I trained the models with the best-found hyperparameters (see the

section on hyperparameter tuning §5.4) using cross-validation with 5 folds. Because

of the size of the dataset, training was rather quick. With GPU acceleration it would

take at most 5 minutes for the slowest model to converge (on a single fold). To have

visual hints of performance of regression models during training, after each fold, two

validation samples would get displayed (akin to Figure 6.1): one random sample and

the sample that had the highest validation error. I also used early stopping to interrupt

training when validation loss would not improve for 5 epochs, restoring to the best-

recorded weights.

Special care was taken when implementing experiments that involved removing

parts of data from the dataset. For example, when testing the impact of the number

of samples in the training set on the validation error, first the k-fold partitioning was

performed, then the training procedure dropped the training samples that were farthest

from the validation fold. Removing samples before the k-fold split would result in

different validation folds every time, making a comparison between different training

runs incorrect.

Finally, at the very end, the best performing model was evaluated on the held out

test set (see §5.3) to assess how it would perform in production. In this case, like

when running hyperparameter optimisation, only the last fold, which is chronologically

closest to the test set, was used for validation to perform a timely stop of training.

Chapter 6

Experiments

This chapter describes in detail the experiments that were carried out in this work as

well as presents and interprets the results.

6.1 Architecture choice

The first experiment was set up to evaluate different neural network architectures (de-

scribed in §5.1), comparing them among each other and against baselines (described

in §5.2). For this experiment, the models were trained on a full dataset for a single

link (link #1). Preliminary hyperparameter tuning was performed to pick optimal hy-

perparameters for this configuration (refer to the appendix D.1, D.2). The following

experiments were based on the architecture that had shown the best results in this ex-

periment. Whilst it is conceivable that runner-up architectures could do better in other

experiments, I relied on this heuristic due to the time and resource constraints of this

work.

6.1.1 Classification

Table 6.1 summarises results of various classification models, including the logistic

regression baseline, tuned CNN and LSTM models, as well as ResNet and FCN archi-

tectures as provided by Fawaz et al. [7]. FCN, in particular, was proposed by Wang et

al. as a strong baseline for time series classification [32]. First attempts to train FCN

were unsuccessful with the model failing to converge. I added learning rate annealing,

reducing it by a factor of two when validation loss would not improve for 5 epochs.

Then, after a short warm-up, the model showed convergence.

28

Chapter 6. Experiments 29

Model 0–15 15–60 60–120 120–240 240+

Logistic

0.35±0.02
0.62±0.03
0.44±0.02

0.51±0.01
0.55±0.01
0.53±0.01

0.44±0.02
0.54±0.02
0.49±0.02

0.63±0.03
0.55±0.03
0.58±0.03

0.80±0.02
0.70±0.04
0.74±0.03

LSTM

0.54±0.01
0.80±0.02
0.64±0.01

0.66±0.02
0.60±0.02
0.63±0.02

0.61±0.02
0.60±0.02
0.60±0.02

0.74±0.03
0.68±0.02
0.70±0.02

0.82±0.02
0.85±0.01
0.84±0.01

CNN

0.53±0.04
0.75±0.03
0.62±0.03

0.65±0.02
0.64±0.05
0.64±0.03

0.62±0.02
0.61±0.02
0.61±0.01

0.74±0.02
0.73±0.01
0.73±0.01

0.85±0.01
0.81±0.02
0.83±0.01

FCN

0.58±0.04
0.79±0.02
0.66±0.03

0.66±0.04
0.58±0.03
0.61±0.02

0.60±0.02
0.56±0.04
0.58±0.02

0.70±0.02
0.71±0.03
0.71±0.03

0.83±0.02
0.83±0.02
0.83±0.02

ResNet

0.52±0.04
0.82±0.04
0.64±0.03

0.69±0.02
0.62±0.05
0.65±0.03

0.62±0.04
0.59±0.06
0.59±0.03

0.73±0.02
0.66±0.04
0.69±0.02

0.82±0.03
0.84±0.02
0.83±0.01

Table 6.1: Results. Each column corresponds to a class that covers the specified inter-

val after the last input timestep. Each cell has a column of tree measures: precision,

recall and F1 score respectively. Higher is better.

All neural network models substantially outperformed the logistic baseline but

had very little difference among themselves. This reinforces the expectation that the

biggest bottleneck would be the dataset, to the extent that the choice of an architecture

would not play a major role. The LSTM model showed slightly better consistency with

a lower spread of values.

A remarkable result is that all models showed relatively low precision with high

recall for the first class, which means that there was a high number of false positives.

This suggests that the model is convinced that an onset of tidal fading is coming soon

but often misses the precise timing, which is unsurprising given that the first bin is

only three timesteps long. Possibly, using higher-resolution data or making the first

bin longer could improve the precision. Even then, the results already show promise

and can provide useful insight – that an onset of tidal fading is imminent or that it is

still a long way off, with the most uncertain region in-between the two extremes.

6.1.2 Regression

The results of evaluating regression models are presented in Table 6.2. Both the CNN

and the LSTM architectures outperformed both baselines across all metrics. CNN

Chapter 6. Experiments 30

showed by far the best MSE and better signal MAPE than LSTM, whilst the latter had

marginally better bandwidth MAPE.

Model MSE MAPE (bw) MAPE (sig)

Linear 0.674±0.062 0.486±0.019 0.0476±0.0024

Seasonal naive 0.649±0.040 0.383±0.016 0.0419±0.0011

LSTM 0.472±0.054 0.286± 0.020 0.0372±0.0027

CNN 0.359± 0.044 0.328±0.018 0.0331± 0.0018

Table 6.2: Regression results. Lower is better. “bw” and “sig” stand for bandwidth and

signal respectively.

Interestingly, LSTM outputs were much smoother compared to CNN outputs. Fig-

ures 6.1a and 6.1b show the same random sample predicted by LSTM and CNN models

respectively – the CNN model captured jaggedness of the signal curve and the LSTM

model did not. A possible explanation could be that the LSTM model is shallow and

the only recurrent layer has a smooth activation function (tanh), while the CNN net-

work has 12 convolutional layers with ReLU activations, which are inherently jagged.

Despite a much larger number of layers and a larger number of parameters (148k

parameters against LSTM’s 13k), the CNN model was substantially faster to train.

This comes as no surprise since the CNN model is parallelisable in the time domain,

whereas the LSTM model requires at least 72 sequential steps (the number of input

timesteps) to compute the output. Because in our case the convolutional layers them-

selves were relatively compact, even when training on a CPU, one epoch would take

a couple of seconds to complete, and it would take an average of 30 epochs to con-

verge. Conversely, without a GPU, training the LSTM for one epoch would take tens

of seconds, and it would take around 30-50 epochs to converge. Whilst on a GPU the

difference in training time becomes negligible, this is an important advantage of the

CNN model because it can be efficiently run on cheap server hardware.

Figures 6.2a and 6.2b show signal MAPE for all timesteps individually. The charts

suggest that LSTM performs slightly better for immediate predictions, but falls behind

for farther timesteps. On the other hand, it consistently showed slightly better results

in predicting bandwidth (see Figure 6.3).

Expectedly, the seasonal naive baseline performed very well in noiseless regions,

often much better than any other model with almost perfect fits in situations that mirror

Chapter 6. Experiments 31

(a) LSTM (b) CNN

Figure 6.1: Signal predictions of a random validation sample.

(a) LSTM (b) CNN

Figure 6.2: Stepwise signal MAPE for LSTM and CNN. Dashed lines denote standard

errors in particular timesteps.

the last tidal day (Figure 6.4a), but then it would completely fail in irregular situations

(Figure 6.4b). As can be seen from the results, these situations happen often enough

that the seasonal naive model lost to the neural network models by a significant margin.

Another disadvantage of the seasonal model is that it is not adaptive – it will not change

its predictions upon seeing new data, unlike the other models.

Neural networks show promising results having witnessed only, roughly, 200 tidal

cycles. Of course, the obvious drawback is the necessity to collect a dataset for the link

to be able to train a model tailored specifically for it. One of the following experiments

(§6.3) tests whether these models are able to generalise to other radio links on a dataset

as small as ours.

Chapter 6. Experiments 32

(a) LSTM (b) CNN

Figure 6.3: Stepwise bandwidth MAPE for LSTM and CNN. Dashed lines denote stan-

dard errors in particular timesteps.

(a) Good fit in a repeating situation (b) Bad fit in a changing situation

Figure 6.4: Seasonal naive predictions of two samples.

6.2 Ablation study

In this experiment, different sets of input features were removed from the dataset to

see how it would affect validation performance. For the regression test, I used the

CNN model from the architectural experiment (§6.1) because it had shown the best

performance across almost all measures and it was substantially faster to train than

the LSTM model. Similarly, for the classification test, I used the CNN classifier –

although all classification models showed practically the same results, the CNN model

was the easiest to train. To reuse previous results, the model was trained on the same

dataset for the same link as in §6.1. First, all weather features were stripped from

the dataset, then also the sea level time series. For the classification test, I also tried

keeping only signal or bandwidth in the dataset. This was not done for regression

because the output includes both signal and bandwidth. The results of the regression

experiment are shown in Table 6.3.

Chapter 6. Experiments 33

Features MSE MAPE (bw) MAPE (sig)

{s,b,w,t} 0.359± 0.044 0.328±0.018 0.0331± 0.0018

{s,b,t} 0.349± 0.044 0.320±0.020 0.0312±0.0020
{s,b} 0.413± 0.038 0.374± 0.020 0.0344±0.0016

Table 6.3: Regression results. Lower is better. “s,b,w,t” denote signal, bandwidth,

weather data, tidal height respectively. “bw” and “sig” denote bandwidth and signal

respectively.

The results suggest that weather data had no significant impact on validation perfor-

mance for the regression. In fact, the model trained on everything except weather data

showed slightly better average performance than the one trained on full data, though

the results are well within standard error. This can be attributed to training variance

or to a slight overfit of the complete model to weather data. Removing tidal data does

have a significant adverse effect on all metrics. This conforms with prior analysis

which showed that there was relatively strong dependence between tidal height and

signal (Figure 3.4).

Features 0–15 15–60 60–120 120–240 240+

{s,b,w,t}

0.53±0.04
0.75±0.03
0.62±0.03

0.65±0.02
0.64±0.05
0.64±0.03

0.62±0.02
0.61±0.02
0.61±0.01

0.74±0.02
0.73±0.01
0.73±0.01

0.85±0.01
0.81±0.02
0.83±0.01

{s,b,t}

0.67±0.04
0.81±0.04
0.73±0.03

0.75±0.01
0.72±0.02
0.73±0.01

0.63±0.03
0.68±0.01
0.65±0.02

0.72±0.02
0.70±0.02
0.71±0.02

0.83±0.02
0.81±0.03
0.82±0.02

{s,b}

0.62±0.04
0.78±0.04
0.69±0.03

0.64±0.02
0.62±0.01
0.63±0.06

0.51±0.02
0.58±0.03
0.54±0.02

0.65±0.02
0.60±0.03
0.62±0.02

0.81±0.01
0.80±0.02
0.80±0.01

{s}

0.54±0.02
0.75±0.06
0.63±0.03

0.62±0.02
0.56±0.02
0.59±0.02

0.49±0.01
0.58±0.02
0.53±0.02

0.62±0.02
0.58±0.03
0.60±0.02

0.81±0.01
0.77±0.02
0.79±0.01

{b}

0.67±0.04
0.79±0.03
0.72±0.03

0.52±0.02
0.50±0.04
0.50±0.03

0.42±0.03
0.52±0.03
0.46±0.03

0.62±0.02
0.55±0.02
0.58±0.02

0.81±0.01
0.80±0.01
0.80±0.01

Table 6.4: Classification results. Each column corresponds to a class that covers the

specified interval after the last input timestep. Each cell has a column of three measures

(from top to bottom): precision, recall and F1 score. Higher is better.

Chapter 6. Experiments 34

The classification results, shown in table 6.4, reveal interesting insight. First of

all, the model trained on the complete dataset shows clear signs of overfitting to the

weather data. This conclusion can be made from the significantly lower performance

of the full model for the first two classes. Hypothetically, this model could have learned

to ignore the weather inputs to perform at least as well as the model that was trained on

everything except weather; instead, it showed worse validation performance. Another

observation is that, similar to the regression case, tidal height data provides useful

information. Here we also see that it mostly helps with predictions of the middle bins

– from 15 to 240 minutes. Same can be said about signal strength, which seems to

explain these classes better than bandwidth. Bandwidth, on the other hand, proved to

be key in predicting the first class. This is probably because the model detects the sharp

drop from the plateau (see §4.1.1). Consequently, the model that combines the three

features – signal, bandwidth and sea level – shows the best results across the board.

Whilst these results suggest that weather data is detrimental in a dataset of this size,

one cannot rule out the possibility that it would prove useful on much larger scales,

where the weather effects become more apparent. Therefore, it is worth repeating the

experiment when more data becomes available.

6.3 Generalisation across multiple links

A significant disadvantage of previously tested models is they are tailored to a specific

radio link. One has to first gather a dataset for a particular link, then train a model

specific to that link. It took three and a half months of monitoring to achieve the above

results. For some situations, this may be too much, and it would be useful to have a

general model that can work for multiple links. In this experiment, I tested whether our

models can generalise across several links. The methodology is as follows: one model

was trained on a dataset for a single link, another model was trained on two datasets

of two other links, but evaluated on the same validation set as the first model. The

results of the two models were then compared. The experiment was carried out using

the CNN models, which showed good results in the performance experiment, trained

on signal strength, bandwidth and tidal height data, which proved to be the optimal

feature set in the ablation experiment.

For regression, only MAPE measures were used for comparison because, when

training models on different sets of data, the outputs end up scaled differently; hence,

the scale-dependent MSE would yield unfair comparison (though, one could unscale

Chapter 6. Experiments 35

outputs and then evaluate MSE for bandwidth and signal separately). The regression

case is also tested against the naive (see §5.2) and the seasonal naive models fit on the

target link.

Target link Target-trained General Seasonal Naive

#1
0.33±0.02
0.03±0.00

0.56±0.02
0.05±0.00

0.38±0.02
0.04±0.00

0.68±0.02
0.06±0.00

#2
0.10±0.01
0.02±0.00

0.13±0.00
0.03±0.00

0.12±0.01
0.03±0.00

0.15±0.02
0.04±0.00

#3
0.27±0.03
0.04±0.00

0.45±0.06
0.09±0.00

0.30±0.04
0.05±0.00

0.51±0.05
0.08±0.01

Table 6.5: Regression results. Lower is better. Each cells contains a column of two

measures (from top to bottom): bandwidth and signal MAPE. The “target-trained” model

was evaluated and trained on a dataset for the same link, whereas the general model

was trained on data for the two other links.

Regression results, shown in table 6.5, show that whilst the general models outper-

form the naive model, which simply outputs the average of the input, they fall behind

seasonal naive models. This makes them not very practical in the current form. Clas-

sification results appear even less successful and reveal a deeper problem (Table 6.6).

Even the models that were trained on data for the target link performed poorly, with

the exception of the first link. Consequently, general models showed even worse per-

formance. Section §4.3 hints at the possible explanation for such outcome – the second

and the third links exhibit more seasonal variation than the first link. As a result, these

links have long regions that have less (or even zero) tidal fading onsets than others, at

least according to our definition for an onset of tidal fading (see §4.1.4). It is plausible

that the very small datasets that we worked with was enough for the model to learn

to somewhat decently predict tidal onsets for the more consistent first link, but not the

other two links.

As before, the results suggest that the best direction for improvement is a larger

dataset – with more links for better generalisation and with more data per link. As it

stands, our current dataset is not suitable for training practical general models. There

are also techniques worth exploring that may prove useful in achieving generalisation

other than gathering raw data. One could attempt augmenting the dataset by scaling,

shifting, adding noise, etc., to the input timeseries to add more variety to the dataset

and synthesise more training samples. One could even try to simulate non-existing

Chapter 6. Experiments 36

Model 0–15 15–60 60–120 120–240 240+

#1 Target 0.73±0.03 0.73±0.01 0.65±0.02 0.71±0.02 0.82±0.02

#1 General 0.54±0.04 0.48±0.05 0.39±0.03 0.42±0.04 0.65±0.02

#2 Target 0.50±0.03 0.53±0.04 0.48±0.4 0.56±0.05 0.68±0.04

#2 General 0.29±0.08 0.26±0.08 0.23±0.07 0.39±0.06 0.48±0.06

#3 Target 0.48±0.05 0.48±0.05 0.41±0.05 0.53±0.05 0.76±0.05

#3 General 0.28±0.06 0.14±0.04 0.19±0.04 0.14±0.05 0.47±0.07

Table 6.6: Classification F-scores. Higher is better. The “target” model was evaluated

and trained on a dataset for the same link, whereas the general model was trained on

data for the two other links.

links by modelling the physics of tidal fading (§3). This should be attempted with

care and consideration so as to not generate irrelevant data that just ends up reducing

the signal-to-noise ratio of the dataset. Hence, this topic requires its own dedicated

research. Another potentially useful technique in the event that there is a lot of data

for some links but less for others, is transfer learning – a model trained on a dataset

for one link (or some links) may learn low-level features that can be reused for other

links with some fine-tuning, requiring less data than when training a new model from

scratch [6].

6.4 Impact of dataset size

In this experiment, I tested how the size of the training set affects the performance of

the previously tested models. This is either to confirm or cast doubt on the idea that

training our models on more data would significantly improve performance. Same as

in the previous experiments, I used the CNN models trained on a dataset for a single

link with all features except weather data. I ran full cross-validation on training sets of

varying size: from 10% to 100% of training samples with a 10% step, while keeping

validation folds 100% of the original size (see §5.5 for preprocessing details). Then I

plotted validation metrics against percentages of the training set used to get an idea of

how the two are related. Again, because different training data is used each time, the

outputs get scaled differently, so plotting validation loss, which is the scale-dependent

MSE, could be misleading. Instead, in the regression case, I plotted the validation

Chapter 6. Experiments 37

MAPE of bandwidth. For classification, I plotted the mean F1 score of all classes,

which is easier to interpret than categorical cross-entropy validation loss.

(a) Regression, Link #1 (b) Classification, Link #1

(c) Classification, Link #2

Figure 6.5: Plots of validation metrics against the ratio of the train set used.

Plots on Figure 6.5 show clear evidence of validation score improvement with

adding more training data. Linear fit for the regression chart 6.5a has a slope of −0.1,

indicating a 10% improvement in MAPE per tenfold increase of the size of the dataset.

Of course, the underlying relationship is not linear – MAPE cannot go below 0 – and

will inevitably slow down, but the plots show no signs of the model reaching its ca-

pacity – only a slight curvature at the end which cannot be distinguished from training

variance. The same is true for the two classification models. Interestingly, both classi-

fication charts (6.5b, 6.5c) show a trend line with a slope of 0.2, despite the model for

the 2nd link significantly underperforming, as was shown in Table 6.4. This gives hope

that, although onsets of tidal fading proved to be difficult to predict for links #2 and

#3, given enough data, the classifiers for those links could still catch up, indicating that

the bottleneck for classification is the dataset size rather than some inherent problem

with the consistency of the onset definition.

Chapter 6. Experiments 38

6.5 Test set evaluation

In this final test, I report how our models of choice would perform in practice, specif-

ically, for 10 days in the middle of June, which corresponds to the last 10% of the

dataset. In the previous experiments, the CNN architecture proved to be computation-

ally efficient and showed top performance across most metrics. Meanwhile, ablation

study revealed that, at least for the current dataset size and architectures, it is best not

to include weather data in the training set, unlike tidal height data, which noticeably

improved validation performance. Therefore, the same settings were used for this test.

The evaluation was performed on the whole test set at once, so standard error estimates

could not be derived. Table 6.7 summarises evaluation performance of the regression

CNN model on three held out test sets for each link, matching it against the seasonal

naive baseline. In addition to MAPE, I also reported the Mean Absolute Error MAE as

it may have a clearer practical interpretation due to the shift invariance – the average

of absolute residuals. For clarity, bandwidth MAE was rescaled by the corresponding

bandwidth reference values (see §4.1.1). Table 6.8 shows the classification results. It

can be noted that the test set proved to be easier than the training set for links #1 and

#2.

Link MAPE (bw) MAE (bw) MAPE (sig) MAE (sig)

#1 0.342 13.59 0.025 1.66

#2 0.110 16.04 0.019 2.47

#3 0.212 15.80 0.034 2.29

Table 6.7: Regression results for each link. “bw” and “sig” stand for bandwidth and

signal respectively.

Link 0–15 15–60 60–120 120–240 240+

#1 0.76 0.77 0.73 0.78 0.87

#2 0.66 0.65 0.58 0.63 0.80

#3 0.57 0.48 0.50 0.52 0.81

Table 6.8: Classification results (F1 scores) for each link.

Chapter 7

Conclusions

This work was the first-ever attempt at forecasting performance of radio links affected

by tidal fading, covering the whole process of designing and training deep learning

models, including data acquisition, data processing, hyperparameter tuning and eval-

uation. In addition, it provided a comprehensive explanation for the phenomenon of

tidal fading – an undeservedly understudied topic.

Using roughly three months worth of data for three tide-affected links, a number of

different experiments were carried out to test different aspects of the proposed models.

It was shown that, despite a relatively small dataset, deep learning methods were able

to outperform simpler baselines. The choice of the architecture did not play a major

role at this scale, but the choice of input features did – whilst sea level data proved

to be a beneficial addition to the training set, the models were not able to make good

use of weather data. It is entirely possible that deep learning models would find useful

patterns in weather data on a sufficiently large dataset as there is strong theoretical

evidence for it. Another remaining problem is training general models that can predict

performance of links that were not shown to the models during training. It is expected

that this is feasible with more link diversity in the dataset and more data per link. In

general, accumulating more data was found to be the most promising way forward.

Other potential directions for further experiments include using transfer learning

for reusing feature extraction trained on a larger dataset for links with less data as well

as using data augmentation and simulations to synthesise new training data. On much

greater amounts of data, some deep learning architectures might start taking lead over

others, so the choice of the architecture also remains an open question.

This dissertation can be a starting point for further work in the area. The pipeline

for acquiring, processing data and training deep learning models, which was developed

39

Chapter 7. Conclusions 40

as part of this dissertation, can now be used to swiftly train models for use in practical

applications or to carry further research on a larger dataset, when more data becomes

available. The supplementary material features data, tooling and code used in this

work. In the near future, I intend to put the results of this work into practice and

build a tool for real-time prediction of performance of tide-affected links in the Tegola

network.

Bibliography

[1] Yoshua Bengio and Yves Grandvalet. No unbiased estimator of the variance of k-

fold cross-validation. Journal of machine learning research, 5(Sep):1089–1105,

2004.

[2] Giacomo Bernardi, Peter Buneman, and Mahesh Marina. Tegola tiered mesh

network testbed in rural scotland. pages 9–16, 01 2008.

[3] Alexei Botchkarev. Performance metrics (error measures) in machine learning

regression, forecasting and prognostics: Properties and typology. arXiv preprint

arXiv:1809.03006, 2018.

[4] Vitor Cerqueira, Luis Torgo, and Igor Mozetic. Evaluating time series forecasting

models: An empirical study on performance estimation methods. arXiv preprint

arXiv:1905.11744, 2019.

[5] François Chollet et al. Keras. https://keras.io, 2015.

[6] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,

and Pierre-Alain Muller. Transfer learning for time series classification. In 2018

IEEE International Conference on Big Data (Big Data), pages 1367–1376. IEEE,

2018.

[7] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,

and Pierre-Alain Muller. Deep learning for time series classification: a review.

Data Mining and Knowledge Discovery, 33(4):917–963, 2019.

[8] Miguel Gutiérrez Gaitán, Luis Pinto, Pedro Miguel Santos, and Luı́s Almeida.

On the two-ray model analysis for overwater links with tidal variations. In 11o

Simpósio de Informática, 2019.

[9] Ivan D. Haigh. Tides and Water Levels, pages 1–13. American Cancer Society,

2017.

41

https://keras.io

Bibliography 42

[10] Zhongyang Han, Jun Zhao, Henry Leung, and King Ma. A review of deep learn-

ing models for time series prediction. IEEE Sensors Journal, PP:1–1, 06 2019.

[11] Ralph VL Hartley. Transmission of information 1. Bell System technical journal,

7(3):535–563, 1928.

[12] Christopher Haslett. Essentials of radio wave propagation, volume 91. Cam-

bridge University Press Cambridge, 2008.

[13] Tianxing He, Jingzhao Zhang, Zhiming Zhou, and James Glass. Quantifying

exposure bias for neural language generation. arXiv preprint arXiv:1905.10617,

2019.

[14] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An intro-

duction to statistical learning, volume 112. Springer.

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[16] Ronald Klimberg, George Sillup, Kevin Boyle, and Vinay Tavva. Forecasting

performance measures - what are their practical meaning? Advances in Business

and Management Forecasting, 7:137–147, 11 2010.

[17] Alex M Lamb, Anirudh Goyal Alias Parth Goyal, Ying Zhang, Saizheng Zhang,

Aaron C Courville, and Yoshua Bengio. Professor forcing: A new algorithm

for training recurrent networks. In Advances in neural information processing

systems, pages 4601–4609, 2016.

[18] A. Macmillan, M. K. Marina, and J. T. Triana. Slow frequency hopping for

mitigating tidal fading on rural long distance over-water wireless links. In 2010

INFOCOM IEEE Conference on Computer Communications Workshops, pages

1–5, 2010.

[19] Samuel Mason. Atmospheric effects on radio frequency (rf) wave propagation in

a humid, near-surface environment. page 86, 03 2010.

[20] A. Mehrabani and H. Golnabi. Investigation of humidity effect on the air

refractive index using an optical fiber design. Journal of Applied Sciences,

11(16):3022–3027, December 2011.

Bibliography 43

[21] Miguel Pereira. Spread spectrum techniques in wireless communication part 2:

Transmission issues in free space. IEEE instrumentation & measurement maga-

zine, 13(1):8–14, 2010.

[22] Jeff Racine. Consistent cross-validatory model-selection for dependent data: hv-

block cross-validation. Journal of econometrics, 99(1):39–61, 2000.

[23] Jimmy SJ Ren and Li Xu. On vectorization of deep convolutional neural networks

for vision tasks. arXiv preprint arXiv:1501.07338, 2015.

[24] D.A. Ross. Introduction to Oceanography. New York, NY: HarperCollins., 1995.

[25] Matteo Sangiorgio and Fabio Dercole. Robustness of lstm neural networks

for multi-step forecasting of chaotic time series. Chaos, Solitons & Fractals,

139:110045, 2020.

[26] Yutaka Sasaki. The truth of the f-measure. Teach Tutor Mater, 01 2007.

[27] Florian Schmidt. Generalization in generation: A closer look at exposure bias.

arXiv preprint arXiv:1910.00292, 2019.

[28] Sreelekshmy Selvin, R Vinayakumar, EA Gopalakrishnan, Vijay Krishna Menon,

and KP Soman. Stock price prediction using lstm, rnn and cnn-sliding window

model. In 2017 international conference on advances in computing, communica-

tions and informatics (icacci), pages 1643–1647. IEEE, 2017.

[29] Murali Shanker, Michael Y Hu, and Ming S Hung. Effect of data standardization

on neural network training. Omega, 24(4):385–397, 1996.

[30] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian opti-

mization of machine learning algorithms. In Advances in neural information

processing systems, pages 2951–2959, 2012.

[31] H.V. Thurman. Introductory Oceanography. New York, NY: Macmillan., 7 edi-

tion, 1994.

[32] Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from

scratch with deep neural networks: A strong baseline. In 2017 International joint

conference on neural networks (IJCNN), pages 1578–1585. IEEE, 2017.

Bibliography 44

[33] R. J. Williams and D. Zipser. A learning algorithm for continually running fully

recurrent neural networks. Neural Computation, 1(2):270–280, 1989.

[34] Zheng Zhao, Weihai Chen, Xingming Wu, Peter CY Chen, and Jingmeng Liu.

Lstm network: a deep learning approach for short-term traffic forecast. IET In-

telligent Transport Systems, 11(2):68–75, 2017.

Appendix A

Equations

A.1 Fresnel equations

Γhp =
−εr sinθ+

√
εr + cos2 θ

εr sinθ+
√

εr + cos2 θ
;Γvp =

sinθ−
√

εr + cos2 θ

sinθ+
√

εr + cos2 θ
(A.1)

where Γhp is the attenuation factor for horizontal polarization, Γvp – for vertical po-

larization, θ is the angle of incidence of the reflected beam and εr is the electrical

permittivity ratio between air and water. Γ for circular polarisation can be worked out

from Γhp and Γvp [21].

A.2 Path length difference in static water

δ = l− (r1 + r2) =
√

d2 +(h1 +h2)2−
√

d2 +(h1−h2)2 =

= d(

√
1+

(h1 +h2)2

d2 −
√

1+
(h1−h2)2

d2)≈ (1)

≈ 0.5d(
(h1 +h2)

2

d2 − (h1−h2)
2

d2) =
2h1h2

d

Refer to figure 3.1 for notation. In step (1), the taylor expansion for
√

1+ x is used,

keeping only the first two terms.

A.3 Path length difference in tidal water

We take the result from A.2 and account for water displacement t:

δ≈ 2(h1− t)(h2− t)
d

, (A.2)

45

Appendix A. Equations 46

If t changes from 0 (low tide) to T (high tide), then δ changes by:

∆δ =
2T (−h1−h2 +T)

d
, (A.3)

A.4 Angle approximations

α1 = arctan(
h1 +h2

d
)− arctan(

h2−h1

d
)≈ 2h2

d
(A.4)

α2 = arctan(
h1 +h2

d
)− arctan(

h1−h2

d
)≈ 2h1

d
(A.5)

Here we use the fact that tan(α)≈ α for small α and that d� h1 +h2.

Appendix B

Screenshots

Figure B.1: Locations of the links and the gauging station

Figure B.2: Real-time tidal height observations and predictions as provided by NTSLF

47

Appendix B. Screenshots 48

(a) Link #1 (b) Link #2 (c) Link #3

Figure B.3: Effects of tidal seasonality on the labelling for the three links. Blue lines

indicate onsets of tidal fading as per definition in §4.1.4.

Appendix C

Tools

C.1 Using unms-stats

C.1.1 Setting up a bash script run.sh

! / b i n / bash

DEVICE1 = ” . . . d e v i c e . . i d . . . ”

DEVICE2 = ” . . . d e v i c e . . i d . . . ”

STATS=” s i g n a l u p l i n k C a p a c i t y d o w n l i n k C a p a c i t y ”

ENDPOINT = ” . . . / nms / a p i / v2 . 1 ”

API KEY = ” . . . a p i k e y . . . ”

DB = ” . . . / d a t a . db ” # p a t h where t o save d a t a

py thon s i g n a l l o g g e r . py −k $API KEY \\
−e $ENDPOINT \\
−d $DEVICE1 $DEVICE2 \\
−s $STATS \\
−db $DB

C.1.2 Setting up a cronjob

∗ / 5 ∗ ∗ ∗ ∗ some pa th / run . sh > some pa th / l o g . t x t 2>&1

NB: It is not necessary to run the script every 5 minutes – it will fetch all statistics

cached on the device. Additionally, it is recommended to periodically create a backup

49

Appendix C. Tools 50

of data.db using any preferred method.

C.2 Fecthing data from AirControl

To fetch 5-minute timestep data for any range from AirControl:

1. Open the UI for the corresponding link in Google Chrome.

2. Open the network tab in the Chrome’s developer console.

3. Use the web UI to select the datetime range and metrics of interest.

4. “metric” entry should appear in the network tab. Right click it, hover over Copy

and select copy as cURL (bash).

In the copied cURL command, under –data-binary, change the field “scale” from

“hours” to “minutes” and execute the request. This will fetch all of the data in the

specified range with a 5-minute step. This must be done before the cookie expires, so

it is not trivial to automate reliably.

C.3 GUI for labelling

The tool is written in C# using .NET WinForms and only works in Windows. When

starting the tool, it prompts to select the input dataset for labelling. Once selected, the

main window with an interactive plot opens. The plot is based on OxyPlot.NET and

allows the user to rescale, drag and shift any axes with the help of mouse buttons and

a mouse wheel.

The controls for the application are presented in Table C.1. Frozen markers cannot

be removed until unfrozen. Intersecting the plot with a horizontal line generates a

marker every time when the signal line crosses the line from the top.

Appendix C. Tools 51

Key Description

Left click Adds a marker at the position closest to the cursor

r Removes the closest marker to the cursor

f Freezes all markers left of the cursor

u Unfreezes all markers

b Switches the secondary axis between bandwidth and sea level

] Removes all markers

i Intersects the signal line with a horizontal line at the cursor position

CTRL+a Set ref value to cursor position and run the algorithm §4.1.4

l Load labels from disk

CTRL+s Save labels to disk

Table C.1: Control of the GUI tool

Appendix D

Architectures

D.1 CNN

D.1.1 Diagram

Figure D.1: Diagram of the CNN architecture

D.1.2 Tuned hyperparameters

Refer to Figure D.1 for disambiguation of parameter names.

1. n filters from 1 to 100, log scale

2. n layers from 1 to 12, linear scale

3. dropout from 0 to 0.7, linear scale

52

Appendix D. Architectures 53

4. dense size from 8 to 512, log scale

D.1.3 Tuning results

rank val loss n filters n layers dropout dense size

1 0.819 73 3 0.5938 11

2 0.830 100 3 0.7 8

3 0.833 83 3 0.7 8

Table D.1: Top 3 results (out of 50) for classification.

rank val loss n filters n layers dropout dense size

1 0.417 7 12 0 32

2 0.431 4 5 0 47

3 0.437 6 6 0 47

Table D.2: Top 3 results (out of 50) for regression.

D.2 LSTM

D.2.1 Diagram

Figure D.2: Diagram of the LSTM classification architecture

Appendix D. Architectures 54

Figure D.3: Diagram of the LSTM regression architecture

D.2.2 Tuned hyperparameters

Refer to Figures D.2 and D.3 for disambiguation of parameter names.

1. n units from 8 to 512, log scale

2. n layers from 1 to 4, linear scale

3. dropout from 0 to 0.7, linear scale

4. dense size from 8 to 512, log scale

D.2.3 Tuning results

rank val loss n units n layers dropout dense size

1 0.684 8 1 0 382

2 0.759 512 4 0.107 8

3 0.760 512 4 0.437 512

Table D.3: Top 3 results (out of 50) for classification.

Appendix D. Architectures 55

rank val loss n units n layers dropout dense size

1 0.0500 21 1 0 373

2 0.0509 16 1 0 153

3 0.0512 21 1 0 373

Table D.4: Top 3 results (out of 50) for regression.

	Introduction
	Background
	Tidal fading
	Time series classification and forecasting

	Physics of tidal fading
	Data
	Contents of the dataset
	Signal and bandwidth
	Sea level
	Weather
	Tidal fading onset markers

	Data pipeline
	Data sources
	Cleaning and labelling

	Data analysis

	Methods
	Model design
	CNN
	LSTM

	Baselines
	Making the most of data
	Hyperparameter tuning
	Training and evaluation

	Experiments
	Architecture choice
	Classification
	Regression

	Ablation study
	Generalisation across multiple links
	Impact of dataset size
	Test set evaluation

	Conclusions
	Bibliography
	Equations
	Fresnel equations
	Path length difference in static water
	Path length difference in tidal water
	Angle approximations

	Screenshots
	Tools
	Using unms-stats
	Setting up a bash script run.sh
	Setting up a cronjob

	Fecthing data from AirControl
	GUI for labelling

	Architectures
	CNN
	Diagram
	Tuned hyperparameters
	Tuning results

	LSTM
	Diagram
	Tuned hyperparameters
	Tuning results

